Final

Groundwater Monitoring Report March 2006 Monitoring Round 23

for

Former Marine Corps Air Station El Toro Irvine, California

Prepared for:

Base Realignment and Closure Program Management Office West 1455 Frazee Rd. Suite 900 San Diego, CA 92108

Prepared by:

CDM Federal Programs Corporation 9444 Farnham Street, Suite 210 San Diego, California 92123

Prepared under:

Naval Facilities Engineering Command Contract Number N68711-00-D-0004 Contract Task Order 0084

27 September 2006

9444 Farnnam Street - Suite 210 San Diego, California 92123 tel: 858 268-3383 fax: 858 268-9677

September 27, 2006 DOC No. 7592

Mr. Glenn Christensen Base Realignment and Closure Program Management Office West 1455 Frazee Road, Suite 900 San Diego, CA 92108-4310

Subject: Navy Contract No. N68711-00-D-0004, Delivery Order 0084

Multimedia Environmental Compliance

Final Groundwater Monitoring Report, March 2006, Monitoring Round 23,

Former MCAS El Toro, Irvine, California

Dear Mr. Christensen:

Enclosed for your distribution are two copies of the Final Groundwater Monitoring Report for the March 2006 Monitoring Round 23, Former MCAS El Toro, Irvine, California. Nine copies have distributed to the BCT and other interested parties under the Navy's cover letter date 27 September 2006. Two bound copies and one unbound copy have been sent directly to Ms. Diane Silva for the Administrative Record and one additional copy will be delivered to Ms. Marge Flesch at Former MCAS El Toro.

If you have any questions please call me at (858) 268-3383.

Sincerely,

Larry Davidson, P.E.

Larry Harielson

Program Manager

CDM Federal Programs Corporation

c: G. Tinker, NAVFAC Southwest

D. Silva, NAVFAC Southwest

M. Flesch, MCAS El Toro

M. Higman

File

Final

Groundwater Monitoring Report March 2006 Monitoring Round 23

for

Former Marine Corps Air Station El Toro Irvine, California

U.S. Navy Contract Number N68711-00-D-0004 Delivery Order 084

Prepared by:

Lor Dave Lange

CDM Federal Programs Corporation

Environmental Scientist

9/26/0Ce

Approved by:

Larry Davidson, P.E.

CDM Federal Programs Corporation

Program Manager

9/26/06

This page intentionally left blank.

Executive Summary

This groundwater monitoring report presents the results of sampling and groundwater level measurements conducted during March 2006 at the Former Marine Corps Air Station (MCAS) El Toro, California (herein referred to as "Former MCAS El Toro"). This is the 23rd groundwater monitoring event (Round 23) conducted at the Former MCAS El Toro since 1992. CDM Federal Programs Corporation (CDM) conducted Round 23 groundwater monitoring activities for the United States Department of the Navy (DON), Naval Facilities Engineering Command (NAVFAC) Southwest.

The groundwater monitoring program currently includes semi-annual sampling of wells at Installation Restoration Program (IRP) Sites 1, 2, 3, 5, and 17. IRP Sites 16, 18, and 24 were removed from the scope of this groundwater monitoring program prior to the Round 23 sampling event and are currently being monitored under site-specific remedial designs. Monitoring wells in the current sampling program were selected in order to provide data to document conditions at these sites and for use in the evaluation of trends in contaminant concentrations and groundwater elevations. Groundwater level measurements and samples were collected from 19 monitoring wells during Round 23.

Groundwater samples from all 19 monitoring wells were analyzed for volatile organic compounds (VOCs), the primary contaminants of concern (COC). Samples from selected monitoring wells were also analyzed for radionuclides, metals, perchlorates, and general chemistry parameters. Key findings from groundwater sampling activities and data evaluation during Round 23 are summarized below:

IRP Site 1

One IRP Site 1 monitoring well was sampled during Round 23. VOCs were not detected in samples collected from 01_MW201. Perchlorate was detected at a concentration of 376 micrograms per liter (μ g/L), which exceeded the current DON level of concern of 24 μ g/L (DON 2006).

IRP Site 2

Seven IRP Site 2 monitoring wells were sampled during Round 23. Tetrachloroethene (PCE) was detected in monitoring wells 02NEW7 and 02NEW8A at concentrations of 0.9J and 8 μ g/L, respectively. Trichloroethene (TCE) was detected in well 02NEW7 at a concentration of 32 μ g/L, which exceeds the maximum concentration (8 μ g/L) from previous sampling rounds. The maximum contaminant level (MCL) for both TCE and PCE in drinking water is 5 μ g/L (EPA 2003). Concentration trends of the detected analytes will continue to be monitored and evaluated in future sampling rounds.

IRP Site 3

Five IRP Site 3 monitoring wells were sampled during Round 23. No significant changes in contaminant concentrations occurred in IRP Site 3 samples. Monitoring well $04_DGMW66A$ contained benzene at a concentration of $1~\mu g/L$, which equals the state and federal MCL (EPA 2003). The concentration trend of benzene will continue to be monitored and evaluated in future rounds.

IRP Site 5

Four IRP Site 5 monitoring wells were sampled during Round 23. VOCs were not detected at concentrations that exceeded MCLs in any samples collected from IRP Site 5.

IRP Site 17

Two IRP Site 17 monitoring wells were sampled during Round 23. 17NEW1 and 17_DGMW82 continue to exhibit elevated total dissolved solids (TDS) concentrations of 860 and 676 milligrams per liter (mg/L), respectively. The secondary MCL for TDS in drinking water is 500 mg/L (EPA 2003). VOCs were not reported at concentrations exceeding MCLs.

Recommendations

The following recommendations are made for current monitoring wells in the groundwater monitoring program:

- Well 17_NEW1 has been recommended for redevelopment since Round 21
 (March 2005), but redevelopment has not been performed due to access issues.
 Overgrown vegetation precludes access with development equipment. It is
 recommended that 17_NEW1 continue to be monitored with current turbidity
 conditions until redevelopment can be performed once appropriate vegetative
 clearance activities have been performed.
- 17_DGMW82 is recommended for redevelopment due to sustained elevated TDS measurements since 1993. In addition, redevelopment is recommended to improve groundwater recovery and increase sampling volume.

Contents

Executive Summary

Acronyms and Abbreviations

Introduction	1-1
Objectives and Overview	1-1
Regional Hydrogeology	1-4
Background on Groundwater Monitoring Program	1-4
Groundwater Monitoring Activities	2- 1
Groundwater Level Measurements	2-1
Groundwater Sampling	2-1
2.2.1 Dedicated Pump/Low-flow Purging	2-2
2.2.2 Temporary Pump/Conventional Purging	2-2
Sample Analysis	2- 3
2.3.1 VOCs	2- 3
2.3.2 Radionuclides	2- 3
2.3.3 Metals	2- 3
2.3.5 Perchlorate	2-4
Quality Assurance/Quality Control	2-4
Summary of Monitoring Results	3-1
Water Level Measurements	3-1
Groundwater Analysis	3-1
3.2.1 IRP Site 1	3-1
3.2.2 IRP Site 2	3-1
3.2.3 IRP Site 3	3-3
3.2.4 IRP Site 5	3-4
3.2.5 IRP Site 17	3-5
Recommendations	3-5
References	4-1
	Objectives and Overview Physical Setting Regional Hydrogeology Background on Groundwater Monitoring Program Groundwater Monitoring Activities Groundwater Sampling 2.2.1 Dedicated Pump/Low-flow Purging 2.2.2 Temporary Pump/Conventional Purging Sample Analysis 2.3.1 VOCs 2.3.2 Radionuclides 2.3.3 Metals 2.3.4 General Chemistry 2.3.5 Perchlorate Quality Assurance/Quality Control Summary of Monitoring Results Water Level Measurements Groundwater Analysis 3.2.1 IRP Site 1 3.2.2 IRP Site 2 3.2.3 IRP Site 3 3.2.4 IRP Site 5

Contents (continued)

Tables

- 1 Summary of Groundwater Analyses for Round 23
- 2 Summary of Changes to the Groundwater Monitoring Program Between Monitoring Rounds 22 and 23, September 2005 and March 2006
- 3 Summary of Historical Water Level Measurements and Groundwater Elevations
- 4 Historical Summary of Groundwater Sampling Parameters
- 5 Detected Volatile Organic Compounds in Groundwater
- 6 General Chemistry Analyses
- 7 Results of Radionuclides Analysis
- 8 Metals Analyses
- 9 Perchlorate Analyses

Figures

1	Site Vicinity Map
2	Monitoring Well Network for IRP Sites 1, 2, 3, 5, and 17
3	IRP Site 1 Water Level and Groundwater Monitoring Results
4	IRP Site 2 Water Level and Groundwater Monitoring Results
5	IRP Site 3 Water Level and Groundwater Monitoring Results
6	IRP Site 5 Water Level and Groundwater Monitoring Results
7	IRP Site 17 Water Level and Groundwater Monitoring Results

Appendices

Appendix A	Quality Assurance/Quality Control Summary
Appendix B	Level D Laboratory Analytical Reports and Level IV Data Validation
	Reports

Acronyms and Abbreviations

amsl above mean sea level

APCL Applied P & Ch Laboratory

BCT Base Realignment and Closure Cleanup Team

BNI Bechtel National Inc.

BRAC Base Realignment and Closure

°C degrees Celsius

CDM CDM Federal Programs Corporation

CERCLA Comprehensive Environmental Response, Compensation, and

Liability Act

CLEAN Comprehensive Long-Term Environmental Action Navy

CLP (EPA) Contract Laboratory Program

COC chain of custody

COPC chemical of potential concern

DO dissolved oxygen

DON Department of the Navy

DOT Department of Transportation

DVR data validation report

EPA United States Environmental Protection Agency

°F degrees fahrenheit

FAA Federal Aviation Administration FBI Federal Bureau of Investigation

FS feasibility study

ft feet ft/ft feet/foot

GMP groundwater monitoring plan

gpm gallons per minute

IC institutional controls

ID identification

IRP Installation Restoration Program IRWD Irvine Ranch Water District

J estimated value (data qualifier)
JEG Jacobs Engineering Group Inc.

MCAS Marine Corps Air Station
MCL maximum contaminant level

μg/L micrograms per liter

Acronyms and Abbreviations (continued)

mg/L milligrams per liter

mL milliliter

mL/min milliliters per minute

MNA monitored natural attenuation

MS matrix spike

MSD matrix spike duplicate

NA not applicable

NAVFAC Naval Facilities Engineering Command

ND not detected
NFA no further action
NM not measured
NPL national priority list

NR not reported NS not sampled

NTU nephelometric turbidity units

OCWD Orange County Water District
ORP oxidation-reduction potential

OU operable unit

PARCC precision, accuracy, representativeness, completeness, and

comparability

PCB polychlorinated biphenyl

PCE tetrachloroethene pCi/L picoCuries per liter

QA quality assurance

QAPP quality assurance project plan

QC quality control

%R percent recovery

R rejected value (data validation qualifier)

RA remedial action

RCRA Resource Conservation and Recovery Act

RD remedial design

RFA RCRA facility assessment
RI remedial investigation
ROD record of decision

RPD relative percent difference

RWQCB Regional Water Quality Control Board

Acronyms and Abbreviations (continued)

SAP sampling and analysis plan

SC specific conductivity
SDG sample delivery group

SOP standard operating procedure

SOW statement of work

TCE trichloroethene

TDS total dissolved solids

TOC top of casing

TPH total petroleum hydrocarbons

U nondetect (data qualifier)

UJ nondetect, with estimated detection limit (data validation qualifier)

VOC volatile organic compound

Weston Weston Solutions, Incorporated

WL water level

This page intentionally left blank.

Section 1 Introduction

The results of the Round 23 groundwater monitoring activities conducted during March 2006 at Former Marine Corps Air Station (MCAS) El Toro, California (herein referred to as "Former MCAS El Toro") are presented in this groundwater monitoring report. Figure 1 shows the location of Former MCAS El Toro. Figure 2 displays current Installation Restoration Program (IRP) sites with the sites monitored during Round 23 highlighted. The groundwater monitoring activities described in this report were performed for the Department of the Navy (DON), Naval Facilities Engineering Command (NAVFAC) Southwest by CDM Federal Programs Corporation (CDM) under Contract No. N68711-00-D-0004, Delivery Order 084.

The groundwater sampling and analysis activities described in this report compose the 23rd groundwater monitoring event (Round 23) conducted at the Former MCAS El Toro since 1992.

1.1 Objectives and Overview

In 1985, during routine groundwater sampling performed by the Orange County Water District (OCWD), trichloroethene (TCE) was identified in groundwater from an agricultural well located west of Former MCAS El Toro. A subsequent investigation by OCWD concluded that the groundwater contamination was originating from Former MCAS El Toro (Herndon and Reilly 1989). In 1990, the United States Environmental Protection Agency (EPA) placed Former MCAS El Toro on the National Priorities List (NPL) requiring action under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as a result of the identified offsite contamination (later identified as IRP Site 18). The Navy agreed to conduct remedial investigation (RI)/feasibility studies (FS) of 25 previously identified IRP sites.

In 1992, the Navy initiated a comprehensive IRP and CERCLA investigation at the Former MCAS El Toro to investigate, evaluate, and, if necessary, remediate contamination resulting from historical operations. A total of 25 IRP sites have been identified at Former MCAS El Toro since the inception of the program. IRP Site 23 was subsequently closed during the Resource Conservation and Recovery Act (RCRA) facility assessment (RFA) conducted at Former MCAS El Toro. The other sites were grouped into three operable units (OUs) (OU-1, OU-2, and OU-3). OU-2 was subsequently divided into three subunits (OU-2A, OU-2B, and OU-2C) and was revised to include IRP Site 24 (volatile organic compound [VOC] source area). RIs have been completed for OU-1 (Jacobs Engineering Group, Inc. [JEG] 1996), OU-2A (Bechtel National, Inc. [BNI] 1997a), OU-2B (BNI 1997b, c), OU-2C (BNI 1997d, e), and OU-3 (BNI 1997f). Based on these RIs, no further action (NFA) was recommended for OU-2A

Site 25 and OU-3 Sites 4, 6, 9, 10, 13, 15, 19, 20, 21, and 22. A NFA record of decision (ROD) closing these 11 sites was signed in September 1997 (NAVFAC Southwest 1997). Subsequently, a NFA ROD for IRP Sites 7 and 14 was signed in June 2001 based on removal actions being completed for these sites (NAVFAC Southwest 2001).

Further action was recommended for IRP Sites 2, 3, 5, 8, 11, 12, 16, 17, 18, and 24. IRP Site 1 is currently being evaluated in an RI. Groundwater contamination was identified at 5 of these 11 sites (Sites 1, 2, 16, 18, and 24) and as a potential concern at landfill Sites 3, 5, and 17. IRP Sites 8, 11, and 12 have contamination in shallow soil although no groundwater contamination has been identified. Figure 2 is a site map showing the locations of all the IRP sites currently under investigation with the sites monitored during Round 23 highlighted.

The IRP Sites 1, 2, 3, 5, and 17 have become the focus of the semi-annual groundwater monitoring report since Round 22 (Figure 2). Round 22 and previous rounds included IRP Sites 16, 18, and 24, which are currently being monitored in accordance with site-specific remedial designs. The following is the current status of groundwater investigations and other IRP site investigations being conducted at Former MCAS El Toro:

IRP Site 1 (former ammunition storage) – An RI is currently being conducted at IRP Site 1. Several wells within the site have been sampled as part of the RI to further delineate groundwater contamination. One well is currently being sampled under this groundwater monitoring program to evaluate contaminant concentration trends. Perchlorate is the contaminant of concern (COC) at IRP Site 1.

IRP Site 2 (former landfill) - The remedial action (RA) is currently being implemented for this site and a groundwater treatment pilot project was completed in spring 2003 at IRP Site 2. Several wells have been abandoned at IRP Site 2 during the RA including two wells formerly included in the groundwater monitoring program (02_DGMW60 and 02_DGMW61). Newly constructed wells may be added to the monitoring program in the future. Wells for the RA will be monitored based on the requirements for long-term operation of the final remedy.

IRP Sites 3 and 5 (former landfill) – The Draft ROD has been issued and the remedial design (RD) is currently being prepared for these sites. The wells in the current program will continue to be monitored until the final remedy is in place. Optimum monitoring locations will be selected for the RA.

IRP Site 8, 11, and 12 – These sites are currently in the ROD and or RD/RA stage and exhibit polychlorinated biphenyl (PCB) contamination in surface soil. Previous investigations indicate that these sites have not contributed to groundwater contamination at the Former MCAS El Toro.

IRP Site 16 (fire fighting crash crew training pit No. 2) – The Final ROD was completed for IRP Site 16 in June 2003. The RD was finalized in March 2006. The RD includes semi-annual sampling events to evaluate monitored natural attenuation (MNA) in groundwater, grading of the firefighting training pit to establish positive drainage, and land-use restrictions for both soil and groundwater. An annual report will be prepared at the end of each year.

IRP Site 17 (former landfill) – The RA is currently being initiated for this site. Wells in the existing groundwater program will be monitored until the RA is completed. Wells for the RA will be monitored based on the requirements for long-term operation of the final remedy.

Groundwater monitoring activities described in this report have been conducted in general accordance with provisions of the *Draft Final CERCLA Groundwater Monitoring Plan* (GMP) (BNI 1999). The objectives of this groundwater monitoring report are to:

- Provide a brief background and describe the basis for groundwater monitoring activities at Former MCAS El Toro (Section 1).
- Summarize the history of the groundwater monitoring program and describe groundwater level monitoring activities and sample analyses performed for monitoring Round 23 (Section 2).
- Summarize the evaluation of water-level measurements and groundwater sample analytical results conducted during Round 23 as well as general trends in comparison with past sampling rounds (Section 3).
- Present conclusions and recommendations from the data evaluation (Section 3).

1.2 Physical Setting

Former MCAS El Toro is situated in south-central Orange County, within the city of Irvine, California (Figure 1). The station is bordered on the east and southeast by the city of Lake Forest; to the southeast, south, and southwest by the city of Irvine; and to the west, north, and northeast by unincorporated portions of Orange County and Federal Aviation Administration (FAA) property.

At its maximum acreage, Former MCAS El Toro comprised approximately 4,712 acres of property; however, approximately 3,792 acres have been transferred. In 1998, the Bake Parkway/Interstate 5 public highway expansion project resulted in the transfer of approximately 23 acres in the southeast portion of the station to the California Department of Transportation. In 2001, approximately 897 acres in the northeast portion of the station were transferred to the FAA. In addition, approximately 74 acres in the northeast portion of the station are pending transfer to the Federal Bureau of Investigation. Approximately 2,798 acres were transferred by deed to Lennar

Corporation in July 2005. The remaining 920 acres are being leased in furtherance of remaining cleanup activities.

1.3 Regional Hydrogeology

Former MCAS El Toro is located in the Irvine Groundwater Subbasin and is underlain by unconsolidated alluvial sediments of Holocene and Pleistocene age. The alluvial sediments beneath the Former MCAS El Toro and the off-station area to the west and northwest are divided into three primary hydrogeologic units. These consist of a coarse-grained interval designated as the shallow groundwater unit, a deeper coarse-grained interval designated as the principal aquifer, and a fine-grained intermediate zone that appears to provide some hydraulic separation between the two aquifer zones. Low-permeability semiconsolidated materials underlie the principal aquifer zone. The contact between the principal aquifer and the underlying low-permeability materials is considered to be the base of the water-bearing zone in this area (Herndon and Reilly 1989). Groundwater in the shallow groundwater unit is present under unconfined "water table" conditions, while groundwater in the principal aquifer is typically present under confined conditions.

The intermediate zone that separates the shallow groundwater unit from the deeper principal aquifer consists of fine-grained alluvial sediments and ranges from approximately 70 to 140 feet (ft) thick (JEG 1996). Although the vertical thickness and low-permeability suggest that the intermediate zone acts as an aquitard throughout much of the Irvine subbasin, subsurface data also indicate that it is not a single, continuous, extensive geologic unit (JEG 1996). Historical monitoring data documenting the movement of VOCs from the shallow groundwater unit to the principal aquifer also indicate that some hydraulic interconnection occurs through the intermediate zone.

The principal aquifer is the main water-production zone in the Irvine area. The saturated thickness of the principal aquifer ranges from less than 50 ft in the eastern portion of the Irvine Subbasin to approximately 1,000 ft in the western portion (JEG 1996). Groundwater elevations in the principal aquifer under static (nonpumping) conditions range from approximately 58 ft above mean sea level (amsl) near the western end of the Irvine Subbasin to about 183 ft amsl along its eastern margin beneath the western corner of the Former MCAS El Toro. Beneath the Former MCAS El Toro, the direction of groundwater flow is predominately toward the northwest and converges on a groundwater depression in the downgradient direction to the west of the Former MCAS El Toro.

1.4 Background on Groundwater Monitoring Program

The objectives of the groundwater monitoring program have changed over time based on the requirements of the IRP. As part of the OU-1, OU-2A, OU-2C and OU-3 RI/FS

conducted at the station between 1992 and 1997, a network of on- and off-station monitoring locations (single wells, cluster wells, and Westbay multiport wells) were installed and sampling was conducted to determine groundwater flow patterns and to evaluate groundwater quality. Two rounds of groundwater sampling and analyses were performed under the Comprehensive Long-Term Environmental Action Navy (CLEAN) I program in 1992 (Round 1) and in 1993 (Round 2).

When groundwater contamination was discovered in several areas, additional rounds of sampling (Rounds 3 through 7) were conducted between 1995 and 1997 under the CLEAN II program with the objectives of monitoring potential impacts of IRP sites on groundwater quality, identifying contaminants of potential concern (COPCs), monitoring the extent and movement of existing plumes, evaluating changes in groundwater over time, and providing data necessary to determine groundwater flow direction and hydraulic gradients. These rounds were conducted in accordance with an initial RI/FS Groundwater Monitoring Plan that was developed in 1995. The plan was modified continually to reflect additions of new wells, deletions of wells where contaminants were not reported, and evaluation of information gathered.

The draft final GMP (BNI 1999) was developed to assess groundwater conditions during the time remaining until implementation of final remedies at IRP Sites 2, 3, 5, 17, 18, and 24 and during the subsequent post-closure period. Groundwater monitoring Rounds 8 through 11 were conducted in general accordance with the provisions of the draft final GMP, with modifications as necessary.

Modifications to the number of wells sampled and analyses conducted at each well were implemented during Round 12. Wells were removed from the sampling list if they generated redundant data, were outside of the plume area, or were located within formerly closed sites. Analytical testing of samples collected from each well during Round 12 was selected to be consistent with contaminants at each site and to support base-wide evaluations of contaminants. The groundwater monitoring report for Round 12 describes changes to the groundwater monitoring program in detail (CDM 2001a).

Additional wells were added to the program during Rounds 13 through 22 based on discussions with the Base Realignment and Closure (BRAC) Cleanup Team (BCT) and water districts. The current monitoring program is intended as an interim program until the ROD for each of the sites is complete and the post-ROD monitoring programs for the final remedies have been initiated. The current groundwater monitoring program includes sampling of one well at IRP Site 1, and multiple wells at IRP Sites 2, 3, 5, and 17. IRP Site 16 is sampled during the semi-annual sampling events, however, the evaluation of the data is presented in a separate annual report per the RD (CDM 2006a). Groundwater monitoring activities at IRP Sites 18 and 24 were removed from this monitoring program prior to Round 23. IRP Sites 18 and 24 will progress through the CERCLA process as individual sites.

Groundwater sampling Rounds 1 to 23 were performed as follows:

Round	Date	Report Reference	Comments
1	1992-1993	JEG 1994	Phase I RI
2	1992-1993	JEG 1994	Phase I RI
3	JanFeb. 1996	CDM 1996a	182 Wells/Ports
4	NovDec. 1996	CDM 1997a	182 Wells/Ports
5	March 1997	CDM 1997b	182 Wells/Ports
6	July 1997	CDM 1997c	80 Wells/Ports
7	Oct. 1997	CDM 1998	80 Wells/Ports
8	Oct. 1998	CDM 2000a	115 Wells/Ports
9	JanFeb 1999	CDM 2000b	23 Wells/Ports
10	AprMay 1999	CDM 2000b	46 Wells/Ports
11	July-Aug. 1999	CDM 2000b	115 Wells/Ports
12	June 2000	CDM 2001a	55 Wells/Ports
13	February 2001	CDM 2001b	78 Wells/Ports
14	September 2001	CDM 2002a	85 Wells/Ports
15	March 2002	CDM 2002b	94 Wells/Ports
16	September 2002	CDM 2003a	97 Wells/Ports
17	March 2003	CDM 2003b	98 Wells/Ports
18	September 2003	CDM 2003c	97 Wells/Ports
19	March 2004	CDM 2004a	100 Wells/Ports
20	September 2004	CDM 2004b	113 Wells/Ports
21	March 2005	CDM 2005	114 Wells/Ports
22	September 2005	CDM 2006b	132 Wells/Ports
23	March 2006		19 Wells

Section 2

Groundwater Monitoring Activities

This section summarizes groundwater monitoring activities conducted during March 2006 (Round 23) at the Former MCAS El Toro. Monitoring activities included groundwater level measurements followed by groundwater sampling. Table 1 provides a summary of groundwater analyses for Round 23. The locations of wells under investigation during Round 23 are shown on Figure 2.

The groundwater monitoring program currently includes one monitoring well from IRP Site 1 and multiple wells from IRP Sites 2, 3, 5, and 17. The Round 23 groundwater monitoring program was modified by the Navy, with recommendations from the BCT and water districts, from the wells and parameters presented in Table 3-7 of the GMP (BNI 1999) to provide representative sampling of the sites based on new information not available at the time the GMP was prepared.

Round 23 consisted of collecting water-level measurements and groundwater samples from 19 monitoring wells. Round 23 included sampling of wells sampled during Round 22 with the exception of wells at IRP Sites 16, 18, and 24, which are currently being sampled in accordance with site-specific remedial designs. Table 2 presents changes to the basewide monitoring program between Rounds 22 and 23.

2.1 Groundwater Level Measurements

Groundwater level measurements were collected from the 19 monitoring wells listed in Table 1. A summary of groundwater level measurements and groundwater elevations from the current sampling round, as well as previous rounds, is included as Table 3.

2.2 Groundwater Sampling

Groundwater sampling for Round 23 was conducted from 15 March 2006 through 28 March 2006, and included collection of groundwater samples from 19 monitoring wells. Table 4 presents a historical summary of groundwater sampling parameters. Groundwater quality data are presented in Tables 5 through 9 of this report.

The following sampling methods were used during Round 23:

 Low-flow purging and sampling procedures were used at 13 single wells equipped with dedicated bladder pumps.

 Conventional three-well volume purging and sampling with a portable submersible pump was used at six monitoring wells that are not equipped with dedicated sampling equipment.

These methods of sampling are further described in the following subsections.

2.2.1 Dedicated Pump/Low-flow Purging

Purging and sampling of the wells equipped with dedicated bladder pumps (micropurge method) was performed at a constant pumping rate of approximately 100 milliliters per minute (mL/min). Groundwater levels were monitored continuously during purging to ensure that minimal drawdown (< 0.3 ft) was maintained. Drawdown of less than 0.3 ft was observed during low-flow purging in all wells. In addition to drawdown, field measurements of temperature, pH, specific conductivity (SC), oxidation-reduction potential (ORP), and dissolved oxygen (DO), were taken continuously and logged at 3 to 5 minute intervals during purging using a flow-through cell (QED Model R-FC5000). Turbidity was measured at approximately 3 to 5 minute intervals using a portable turbidity meter (LaMotte Model 2020). Groundwater samples were collected only after at least one pump system volume had been purged from each well and three consecutive field parameter readings for pH, temperature, and SC taken at 3 minute intervals had stabilized (as indicated by less than a 10 percent change in the last three sets of measured parameters). The pump system volume, specific to each well, represents the volume of the pump bladders (395 mL) plus the volume of the discharge tubing connecting the pump to the well cap (9.5 mL per foot multiplied by the tubing length).

2.2.2 Temporary Pump/Conventional Purging

Single monitoring wells that are not equipped with a dedicated bladder pump system were purged and sampled using a decontaminated electric submersible pump. A 3-inch diameter variable-speed Grundfos pump was used. Purging was performed at pumping rates ranging from approximately 3 to 10 gallons per minute (gpm). The pumping rate and the drawdown were measured at multiple intervals during purging. A constant pumping rate was maintained at each well during purging unless the measured groundwater level approached the depth of the pump intake, necessitating a reduction in the pumping rate to reduce drawdown. During purging, field parameters (temperature, pH, SC, DO, and ORP) were measured continuously using a Horiba U-22 Water Quality Monitoring System with a flow-through cell. Measurements were logged at timed intervals (usually 2 to 5 minutes). Turbidity was measured using a portable turbidity meter. Samples were collected once the field parameters (pH, temperature, SC) stabilized (less than a 10 percent change in the last three measured sets of parameters) and after purging a minimum of three well casing volumes from each well. For sample collection, the discharge rate was reduced to between 200 and

500 mL/min. The temporary pump and piping used for purging and sampling were decontaminated prior to purging and sampling of each well.

2.3 Sample Analysis

As described in Section 2.2, analytical testing was modified from the GMP during Round 23 in order to be consistent with contaminants present at each site. The groundwater monitoring report for Round 12 (CDM 2001a) describes in detail these changes to the groundwater monitoring program. Groundwater samples are currently collected and analyzed for VOCs semi-annually in March and September. Groundwater samples from selected wells are also analyzed for additional parameters including perchlorates, radionuclides, metals, and general chemistry parameters. During Round 23, groundwater samples collected from 19 monitoring wells were analyzed for VOCs; samples from 16 wells were analyzed for gross alpha/gross beta; samples from 18 wells were analyzed for metals; and samples from six wells were analyzed for general chemistry parameters. IRP Site 1 well 01_MW201 was also sampled for perchlorates. Table 1 summarizes the analyses conducted for samples from each monitoring well.

2.3.1 VOCs

VOCs are the primary COPCs at the Former MCAS El Toro. All 19 wells sampled were analyzed for VOCs using EPA Contract Laboratory Program (CLP) Method OLM 04.2.

2.3.2 Radionuclides

Sixteen groundwater samples were analyzed for gross alpha and gross beta particle activity using EPA Method 900. Samples were collected from selected monitoring wells at IRP Sites 2, 3, and 5 to support basewide radionuclides evaluation.

2.3.3 Metals

During Round 23, eighteen field-filtered groundwater samples were analyzed for target metals using EPA CLP Method (ILM 0.40). Samples were collected from select monitoring wells at IRP Sites 2, 3, 5, and 17 to support base-wide evaluation of metals in groundwater.

2.3.4 General Chemistry

Samples collected from six wells were analyzed for alkalinity, chloride, nitrate, nitrite, sulfate, and total dissolved solids (TDS) during Round 23. The samples were analyzed using EPA Methods 300 (chloride, nitrate, and sulfate), 310.1 (alkalinity), and 160.1 (TDS). Samples were collected from selected monitoring wells at IRP Sites 2, 3, 5, and 17.

2.3.5 Perchlorate

During Round 23, perchlorate was sampled at one IRP Site 1 well using EPA Method 314 and 8321.

2.4 Quality Assurance/Quality Control

Sampling procedures for Round 23 at the Former MCAS El Toro followed the *Amended Final Sampling and Analysis Plan (SAP) and Quality Assurance (QA) Project Plan (QAPP)* prepared for the Former MCAS El Toro groundwater sampling program (CDM 1996b), and the *Work Plan Addendum for Groundwater Monitoring Data* (CDM 2000c). The data quality assessment program includes field quality control (QC) samples (i.e., field duplicates, matrix spike (MS)/matrix spike duplicates (MSD), and trip blanks), laboratory QC samples, data review/verification, and independent data validation. A detailed description of the QA/QC program, procedures performed during Round 23, and results of QC sample analyses are included in Appendix A.

Section 3 Summary of Monitoring Results

Groundwater monitoring activities at the Former MCAS El Toro for Round 23 included measurement of groundwater levels at 19 monitoring wells and collection of groundwater samples from those 19 monitoring wells. This section presents the results of the evaluation of data collected during Round 23.

3.1 Water Level Measurements

An evaluation of water level elevations at Former MCAS El Toro during the past nine years indicates that on a regional scale, groundwater generally flows to the west in the shallow groundwater unit. Water level data collected during Round 23 support these conclusions. Groundwater elevation contours generated from the basewide monitoring data from Round 23 indicate a westerly flow direction of groundwater in the shallow groundwater unit with an average hydraulic gradient 0.046 feet per linear foot.

3.2 Groundwater Analysis

During Round 23, groundwater samples were collected from 19 monitoring wells at the Former MCAS El Toro. All samples were analyzed for VOCs. Samples from selected wells were also analyzed for radionuclides, metals, perchlorates, and general chemistry parameters. This section presents the Round 23 groundwater monitoring results which exceeded associated maximum contaminant levels (MCLs). Complete analytical results are presented in Tables 5 through 9.

3.2.1 IRP Site 1

Samples from IRP Site 1 were collected from well 01_MW201 and were analyzed for VOCs and perchlorate. No VOCs were detected in the sample, which is consistent with previous results for this well. Perchlorate was reported in the sample collected from 01_MW201 during Round 23 at a concentration of 376 micrograms per liter (μ g/L), which has increase from the Round 22 result (276 μ g/L) and exceeds the Navy action level of 24 μ g/L (DON 2006). Historical and Round 23 perchlorate results are presented in Table 9. Perchlorate concentrations at this well will continue to be monitored in subsequent monitoring rounds.

3.2.2 IRP Site 2

During Round 23, seven of sixteen existing wells were sampled at IRP Site 2 (Magazine Road Landfill). All seven groundwater samples were analyzed for VOCs, metals, and

radionuclides. In addition, one sample was collected (02NEW16) and analyzed for general chemistry. IRP Site 2 analytical results are presented in Tables 5 through 8.

VOCs

Historically, VOCs in groundwater at IRP Site 2 have been associated with two small plumes. The first plume (tetrachloroethene [PCE]) located along the western edge of IRP Site 2 and downgradient of a former operational landfill, is monitored by well 02_NEW8A, which is centrally located within the plume. The concentration of PCE in the sample collected from this well during Round 23 was 8 μ g/L, which is greater than the concentration of PCE reported during Round 22 (6 μ g/L) and also exceeds the MCL of 5 μ g/L. Concentrations of PCE at 02 NEW8A will continue to be evaluated during future sampling rounds.

The second IRP Site 2 plume (TCE) was previously monitored by well 02_DGMW60 that was decommissioned in September 2003. TCE was reported in the sample collected from well 02NEW7 during Round 23 at a concentration of 32 μ g/L, which is greater than previous analytical results and the MCL (5 μ g/L). Concentrations of TCE at 02NEW7 will continue to be evaluated during future sampling rounds.

<u>Radionuclides</u>

Groundwater samples were collected and analyzed for radionuclides (total gross alpha and total gross beta particle activity) from seven wells at IRP Site 2 during monitoring Round 23. Concentrations of gross alpha particle activity in samples collected from IRP Site 2 wells during Round 23 ranged from 5.31 picoCuries per liter (pCi/L) to 32.2 pCi/L. Concentrations of gross alpha particle activity from samples collected from four wells (02NEW15, 02NEW16, 02_NEW2, and 02NEW7) exceeded the MCL of 15 pCi/L. Concentrations of gross beta particle activity ranged from 4.22 pCi/L to 12.6 pCi/L, all below the MCL of 50 pCi/L. These results for IRP Site 2 are comparable to results for total gross alpha and total gross beta during previous rounds.

Metals

During Round 23, nickel was reported above the MCL of $100 \,\mu\text{g/L}$ in one sample collected from well 02NEW11 at a concentration of 223 $\,\mu\text{g/L}$. Similar concentrations of nickel have been reported during previous sampling rounds at this well. Concentrations of other metals were reported below their respective MCLs (if established) and are comparable to previous sampling rounds. An evaluation of metals conducted for the Former MCAS El Toro in 1998 indicated that metals are not considered as COPCs (BNI 1998).

General Chemistry Parameters

The groundwater sample collected from well 02NEW16 was analyzed for general chemistry parameters (TDS, chloride, sulfate, nitrate, and alkalinity) to provide general information about water quality trends at IRP Site 2. Sulfate at a concentration of 277 mg/L and TDS at 845 mg/L were reported above their federal secondary MCLs of 250 mg/L and 500 mg/L, respectively. Concentrations of general chemistry parameters reported during Round 23 at IRP Site 2 are comparable to previous sampling rounds.

3.2.3 IRP Site 3

Groundwater samples from five IRP Site 3 wells were collected and analyzed for VOCs, metals, and radionuclides. In addition, groundwater samples from two IRP Site 3 wells (03_DGMW64A and 03_DGMW65XA) were collected and analyzed for general chemistry parameters. IRP Site 3 analytical results are presented in Tables 5 through 8.

VOCs

VOCs were not detected at concentrations that exceeded MCLs in any IRP Site 3 samples. Analytical results are consistent with previous sampling rounds.

Radionuclides

Concentrations for gross alpha particle activity from samples collected from IRP Site 3 wells ranged from 16.7 pCi/L to 31.7 pCi/L and exceeded the MCL of 15 pCi/L in three wells (03_DGMW64A; 03_DGMW65XA; and 04_DGMW66A). Concentrations for gross beta particle activity ranged from 12.1 pCi/L to 16.1 pCi/L, all below the MCL of 50 pCi/L. These results for IRP Site 3 are comparable to results for total gross alpha and total gross beta reported during previous sampling rounds. A separate study on radionuclides at the Former MCAS El Toro concluded that detections of radionuclides at the base are naturally occurring (Earth Tech 2001).

<u>Metals</u>

During Round 23, nickel was reported above the MCL of 100 μ g/L in samples collected from all five IRP Site 3 wells at concentrations ranging from 219 μ g/L to 664 μ g/L. Thallium was reported above the MCL of 2 μ g/L in four of five IRP Site 3 samples at estimated concentrations ranging from 2.2 J μ g/L and 3.0 J μ g/L. Manganese was detected in a sample from 04_DGMW66A at a concentration (67.4 μ g/L) that exceeded the MCL of 50 μ g/L. Concentrations of metals in IRP Site 3 wells during round 23 were consistent with results in previous sampling events. An evaluation of metals conducted for the Former MCAS El Toro in 1998 indicated that metals are not considered COPCs (BNI 1998).

General Chemistry Parameters

The groundwater samples collected from wells 03_DGMW64A and 03_DGMW65XA were analyzed for general chemistry parameters (TDS, chloride, sulfate, nitrate, and alkalinity) to provide general information about water quality trends at IRP Site 3. Only TDS was reported at concentrations above the federal secondary MCL of 500 mg/L at concentrations of 851 mg/L (03_DGMW64A) and 823 mg/L (03_DGMW65XA). Concentrations of general chemistry parameters reported during Round 23 at IRP Site 3 are comparable to previous sampling rounds.

3.2.4 IRP Site 5

Groundwater samples from five IRP Site 5 wells were collected and analyzed for VOCs, metals, and radionuclides. In addition, a groundwater sample from 05NEW1 was collected and analyzed for general chemistry parameters. IRP Site 5 analytical results are presented in Tables 5 through 8.

VOCs

VOCs were not detected at concentrations that exceeded MCLs in any IRP Site 5 well. Analytical results are consistent with previous sampling rounds.

Radionuclides

Concentrations for gross alpha particle activity from samples collected from IRP Site 5 wells ranged from 10.4 pCi/L to 26.4 pCi/L and exceeded the MCL of 15 pCi/L in two wells (05_DBMW41 and 05_DGMW68A). Concentrations for gross beta particle activity ranged from 7.52 pCi/L to 9.89 pCi/L, all below the MCL of 50 pCi/L. These results for IRP Site 5 are comparable to results for total gross alpha and total gross beta reported during previous sampling rounds. A separate study on radionuclides at the Former MCAS El Toro concluded that detections of radionuclides at the base are naturally occurring (Earth Tech 2001).

Metals

During Round 23, metals were not detected in any IRP Site 5 well at concentrations that exceeded MCLs. Analytical results are consistent with previous sampling rounds.

General Chemistry Parameters

The groundwater samples collected from 05NEW1 were analyzed for general chemistry parameters (TDS, chloride, sulfate, nitrate, and alkalinity) to provide general information about water quality trends at IRP Site 5. Only TDS was reported at concentrations above the federal secondary MCL of 500 mg/L at a concentration of 860

mg/L. Concentrations of general chemistry parameters reported during Round 23 at IRP Site 5 are comparable to previous sampling rounds.

3.2.5 IRP Site 17

Groundwater samples from two IRP Site 17 wells were collected and analyzed for VOCs, metals, and general chemistry. IRP Site 17 analytical results are presented in Tables 5, 6, and 8.

VOCs

VOCs were not detected in samples from any IRP Site 17 wells at concentrations that exceeded associated MCLs. Analytical results were consistent with previous sampling rounds.

<u>Metals</u>

During Round 23, nickel was reported above the MCL of $100 \,\mu\text{g/L}$ in samples 17NEW1 (2070 $\,\mu\text{g/L}$) and 17_DGMW82 (416 $\,\mu\text{g/L}$), which is consistent previous sampling results. Other concentrations of metals reported in IRP Site 17 wells were reported below their respective MCLs and are comparable to concentrations reported during previous sampling rounds. An evaluation of metals conducted for the Former MCAS El Toro in 1998 indicated that metals are not considered chemicals of potential concern (BNI 1998).

General Chemistry Parameters

The groundwater samples collected from wells 17NEW1 and 17_DGMW82 were analyzed for general chemistry parameters (i.e., TDS, chloride, sulfate, nitrate, and alkalinity) to provide general information about water quality trends at IRP Site 17. Only TDS was reported at concentrations above the federal secondary MCL of 500 mg/L at concentrations of 676 mg/L (17_DGMW82) and 860 mg/L (17NEW1). Concentrations of general chemistry parameters reported during Round 23 at IRP Site 17 are comparable to previous sampling rounds.

3.3 Recommendations

At present, the groundwater monitoring program consists of sampling selected wells located at multiple IRP sites to monitor the COPCs. The program is designed to evolve to ensure that the data collected provides a clear understanding of current conditions and incorporates any changes at the IRP sites (e.g., the need to add or remove wells). Any changes to the existing program, including wells to be sampled, parameters to be analyzed for, and/or sampling methodologies will be discussed with the regulatory agencies. After Round 24 and completion of the 2006 annual report, the groundwater

monitoring program at Former MCAS El Toro will be evaluated and revised to ensure that data collected provides a clear understanding of current conditions and incorporates any changes at the IRP sites.

The following recommendations are made for current monitoring wells in the groundwater monitoring program:

- Well 17_NEW1 has been recommended for redevelopment since Round 21 but redevelopment has not been performed due to access issues. Overgrown vegetation makes access with development equipment not possible. It is recommended that 17_NEW1 continue to be monitored with current turbidity conditions until redevelopment can be performed once appropriate vegetative clearance activities have been performed.
- 17_DGMW82 is recommended for redevelopment due to sustained elevated TDS measurements since 1993. In addition, redevelopment is recommended to improve groundwater recovery and increase sampling volume.

Round 24 is scheduled for fall 2006. The same monitoring wells sampled during Round 23 are planned for sampling during Round 24. Round 24 will include measurement of water levels and sampling for VOCs at all monitoring wells and sampling for natural attenuation parameters and total petroleum hydrocarbons (TPH) at IRP Site 16 wells. IRP Site 16 well data will continue to be presented in a separate report per the RD (CDM 2006a).

Section 4 References

- Bechtel National Inc (BNI). 1997a. Draft Final Phase II Remedial Investigation Report for Operable Unit 2A- Site 24, Marine Corps Air Station El Toro, California. March.
- – 1997b. Draft Final Phase II Remedial Investigation Report for Operable Unit 2B Site
 2, Marine Corps Air Station El Toro, California. April.
- — 1997c. Draft Final Phase II Remedial Investigation Report for Operable Unit 2B Site 17, Marine Corps Air Station El Toro, California. April.
- — 1997d. Draft Final Phase II Remedial Investigation Report for Operable Unit 2C Site
 3, Marine Corps Air Station El Toro, California. April.
- – 1997e. Draft Final Phase II Remedial Investigation Report for Operable Unit 2C Site
 5, Marine Corps Air Station El Toro, California. April.
- — 1997f. Draft Final Phase II Remedial Investigation Report for Operable Unit 3A Sites,
 Marine Corps Air Station El Toro, California. June.
- — 1998. Technical Memorandum. Metals in Groundwater, Marine Corps Air Station El Toro, California.
- – 1999. Draft Final CERCLA Groundwater Monitoring Plan, Marine Corps Air Station El Toro, California. June.
- CDM Federal Programs Corporation (CDM). 1996a. Final Quarterly Groundwater Monitoring Report, January-February 1996 Sampling Round. Marine Corps Air Station El Toro, California. June.
- — 1996b. Amended Final Groundwater Monitoring Planning Documents for MCAS El Toro: Quality Assurance Project Plan, Sampling and Analysis Plan, Data Management Plan, Health and Safety Plan; prepared for NAVFACSW Naval Facilities Engineering Command, October 10, 1996.
- – 1997a. Groundwater Monitoring Report, November-December 1996 Sampling Round.
 Marine Corps Air Station El Toro, California. February.
- – 1997b. Groundwater Monitoring Report, March 1997 Sampling Round. Marine Corps Air Station El Toro, California. June.

- – 1997c. Groundwater Monitoring Report, July 1997 Sampling Round. Marine Corps Air Station El Toro, California. October.
- — 1998. Final Groundwater Monitoring Report, October 1997 Sampling Round. Marine Corps Air Station El Toro, California. March.
- — 2000a. Final Groundwater Monitoring Data Summary Report, October-November 1998, Sampling Round 8. Marine Corps Air Station El Toro, California. May.
- —— 2000b. Groundwater Monitoring Data Summary Report, 1999 Monitoring Rounds 9, 10 and 11. Marine Corps Air Station El Toro, California. June.
- — 2000c. Work Plan Addendum for Groundwater Monitoring Data. Marine Corps Air Station El Toro, California. May.
- – 2001a. Final Groundwater Monitoring Data Summary Report, June 2000, Monitoring Round 12. Marine Corps Air Station El Toro, California. May.
- — 2001b. Final Groundwater Monitoring Report, February 2001, Monitoring Round 13. Marine Corps Air Station El Toro, California. October.
- — 2002a. Final Groundwater Monitoring Report, September 2001, Monitoring Round 14.
 Marine Corps Air Station El Toro, California. February.
- — 2002b. Final Groundwater Monitoring Report, March 2002, Monitoring Round 15.
 Marine Corps Air Station El Toro, California. August.
- — 2003a. Final Groundwater Monitoring Report, September 2002, Monitoring Round 16.
 Marine Corps Air Station El Toro, California. February.
- 2003b. Final Groundwater Monitoring Report, March 2003, Monitoring Round 17.
 Marine Corps Air Station El Toro, California. July.
- – 2003c. Final Groundwater Monitoring Report, September 2003, Monitoring Round 18.
 Marine Corps Air Station El Toro, California. February.
- – 2004a. Final Groundwater Monitoring Report, March 2004, Monitoring Round 19.
 Marine Corps Air Station El Toro, California. August.
- – 2004b. Final Groundwater Monitoring Report, September 2004, Monitoring Round 20.
 Marine Corps Air Station El Toro, California. March.
- – 2005. Final Groundwater Monitoring Report, March 2005, Monitoring Round 21.
 Marine Corps Air Station El Toro, California. August.

- — 2006a. Final Remedial Design for Monitored Natural Attenuation with Institutional Controls Operable Unit 3, IRP Site 16, Crash Crew Training Pit No. 2. Former Marine Corps Air Station El Toro, California. March.
- – 2006b. Final Groundwater Monitoring Report, September 2005, Monitoring Round 22.
 Marine Corps Air Station El Toro, California. May.
- Department of the Navy (DON). 2006. Navy Perchlorate Sampling and Management Policy. April.
- Earth Tech, Inc. 2001b. Final Technical Memorandum, Phase II Evaluation of Radionuclides in Groundwater at Former Landfill Sites and EOD Range, Marine Corps Air Station, El Toro, California. December.
- Herndon, R.L and J.F. Reilly. 1989. *Phase I Report–Investigation of Trichloroethylene Contamination in the Vicinity of Marine Corps Air Station El Toro*. Prepared for the Orange County Water District. March.
- Jacobs Engineering Group Inc (JEG). 1994. *Draft Phase I RI Technical Memorandum*. Marine Corps Air Station El Toro, California.
- — 1996. Draft Final Interim Operable Unit 1 Remedial Investigation/Feasibility Study Report, Marine Corps Air Station El Toro, California. August.
- Naval Facilities Engineering Command (NAVFAC) Southwest. 1997. Draft Final Record of Decision, Operable Units 2A and 3A No Further Action Sites, Marine Corps Air Station El Toro, California. September.
- — 2001. *Draft Record of Decision, IRP Sites 7 and 14, No Further Action Sites,* Marine Corps Air Station El Toro, California. June.
- United States Environmental Protection Agency (EPA). 2003. EPA National Primary Drinking Water Regulations, EPA 816-F-03-016 June.

This page intentionally left blank.

TABLES

Summary of Groundwater Analyses for Round 23 Former MCAS El Toro, California

IRP Site No.	Well ID	Well Completion	Well Type	Sampling System	Date Sampled	VOCs CLP Method (OLM 04.2)	Gross Alpha/Beta (EPA 900)	Metals (filtered) CLP Method (ILM 0.40)	General Chemistry (1)	Perchlorates (EPA Method 314 & 8321)	QC Samples
1	01_MW201	Shallow	single	bladder pump	16-Mar-06	Х				Х	
	02_DGMW59	Shallow	single	bladder pump	21-Mar-06	Х	х	х			MS/MSD
	02NEW11	Shallow	single	bladder pump	21-Mar-06	х	х	X			
	02NEW15	Shallow	single	bladder pump	22-Mar-06	х	Х	Х			
2	02NEW16	Shallow	single	bladder pump	22-Mar-06	х	х	х	Х		
	02NEW2	Shallow	single	bladder pump	22-Mar-06	х	х	х			
	02NEW7	Shallow	single	None	16-Mar-06	х	х	Х			Duplicate
	02NEW8A	Shallow	single	bladder pump	16-Mar-06	х	х	х			
	03_DGMW64A	Shallow	single	None	15-Mar-06	х	х	х	Х		
	03_DGMW65XA	Shallow	single	None	15-Mar-06	х	х	х	х		Duplicate
3	04_DBMW40	Shallow	single	bladder pump	15-Mar-06	х	х	Х			
	04_DGMW66A	Shallow	single	None	16-Mar-06	Х	х	х			
	04_UGMW63	Shallow	single	bladder pump	16-Mar-06	х	Х	Х	<u> </u>		
	05_DBMW41A	Shallow	single	None	15-Mar-06	x	х	х			
5	05_DGMW67A	Shallow	single	bladder pump	17-Mar-06	х	Х	х			
	05_DGMW68A	Shallow	single	None	16-Mar-06	х	х	х			
	05NEW1	Shallow	single	bladder pump	17-Mar-06	х	Х	Х	х		
17	17_DGMW82	Shallow	single	bladder pump	22-Mar-06	х		х	X		·
	17NEW1	Shallow	single	bladder pump	20-Mar-06	' Х		х	Х		

Notes:

(1) General Chemistry Methods: alkalinity (EPA 310.1); total dissolved solids (EPA 160.1); chloride, nitrate, and sulfate (EPA 300); and nitrite as N (EPA 354.1).

Acronyms and Abbreviations:

CLP = contract laboratory program

EPA = United States Environmental Protection Agency

ILM = inorganic laboratory method

IRP = Installation Restoration Program

ms/msd = matrix spike/matrix spike duplicate

NA = not available

OLM = organic laboratory method

TPH = total petroleum hydrocarbons

VOCs = volatile organic compounds

QC = quality control

Table 2
Summary of Changes to the Groundwater Monitoring Program Between Monitoring Rounds 22 and 23, September 2005 and March 2006 at Former MCAS El Toro, California

Well Identification	Well Completion	Well Type	Screen Interval (feet bgs)	Sampling System	Water Level	Sampled	Changes in Sampling Program from Round 22 to Round 23
SITE 1							
01_MW201	Shallow	single	27-57	bladder pump	√	✓	No change
SITE 2		· · · · · ·		•			
02_DGMW59	Shallow	single	69-89	bladder pump	✓	✓	No change
02NEW11	Shallow	single	45-65	bladder pump	√		No change
02NEW15	Shallow	single	25-65	bladder pump	✓		No change
02NEW16	Shallow	single	25-65	bladder pump	√	✓	No change
02NEW2	Shallow	single	75 – 95	bladder pump	√	✓	No change
02NEW7	Shallow	single	103-143	None	✓	√	No change
02NEW8A	Shallow	single	84-104	bladder pump	√	✓	No change
SITE 3							
03_DGMW64A	Shallow	single	210-250	None	✓	✓	No change
03_DGMW65XA	Shallow	single	201-235	None	√	✓	No change
04_DBMW40	Shallow	single	220-260	bladder pump	1		No change
04_DGMW66A	Shallow	single	190-230	None	√	√	No change
04_UGMW63	Shallow	single	235-275	bladder pump	✓	✓	No change
SITE 5							
05_DBMW41A	Shallow	single	145-185	None	√	✓	No change
05_DGMW67A	Shallow	single	150-190	bladder pump	✓	✓	No change
05_DGMW68A	Shallow	single	146-186	None	✓	✓	No change
05NEW1	Shallow	single	163-203	bladder pump	√	✓	No change
SITE 16							
16_MPE1	Shallow	single	146-191	bladder pump	✓	✓	No change
16_MW01	Shallow	single	155-180	bladder pump	✓		No change
16_MW02	Shallow	single	153-178	bladder pump	✓	<u> </u>	Well removed from the semi-annual monitoring program
16_MW03	Shallow	single	158-183	bladder pump	✓	✓	No change
16_MW04	Shallow	single	155-190	bladder pump	✓	✓	No change
16_MW05	Shallow	single	155-190	bladder pump	✓	✓	No change.
16_MW07	Shallow	single	145-190	bladder pump	V		Well removed from the semi-annual monitoring program
16_MW08	Shallow	single	165-185	bladder pump	/	✓	No change
16_MW09	Shallow	single	165-185	bladder pump	✓	✓	No change

CDM

Table 2 (continued)
Summary of Changes to the Groundwater Monitoring Program Between Monitoring Rounds 22 and 23, September 2005 and March 2006 at Former MCAS El Toro, California

Well Identification	Well Completion	Well Type	Screen Interval (feet bgs)	Sampling System	Water Level	Sampled	Changes in Sampling Program from Round 22 to Round 23
16_MW10	Shallow	single	185-195	bladder pump	✓		Well removed from the semi-annual monitoring program
16_MW11	Shallow	single	160-180	bladder pump	✓	✓	No change
16_MW12	Shallow	single	160-180	bladder pump	✓		Well removed from the semi-annual monitoring program
16_MW13	Shallow	single	160-180	bladder pump	✓	✓	No change
16_MW14	Shallow	single	185-195	bladder pump	✓		Well removed from the semi-annual monitoring program
16_MW15	Shallow	single	160-180	bladder pump	√		Well removed from the semi-annual monitoring program
16_MW16	Shallow	single	190-220	bladder pump	✓		Well removed from the semi-annual monitoring program
SITE 17							
17_DGMW82	Shallow	single	235-255	bladder pump	✓	✓	No change
17NEW1	Shallow	single	186-226	bladder pump	✓	1	No change
SITE 18							
18_BGMP06A	Principal	multiport	445-455	Westbay System			Well removed from the monitoring program
18_BGMP06B	Principal	multiport	380-390	Westbay System			Well removed from the monitoring program
18_BGMP06C	Principal	multiport	295-305	Westbay System	·		Well removed from the monitoring program
18_BGMP10A	Principal	multiport	1001-1011	Westbay System			Well removed from the monitoring program
18_BGMP10B	Principal	multiport	887-897	Westbay System			Well removed from the monitoring program
18_BGMP10C	Principal	multiport	752-762	Westbay System			Well removed from the monitoring program
18_BGMP10D	Principal	multiport	563-573	Westbay System			Well removed from the monitoring program
18_BGMP10E	Principal	multiport	429-439	Westbay System			Well removed from the monitoring program
18_BGMP10F	Principal	multiport	218-229	Westbay System			Well removed from the monitoring program
18_BGMW03A	Principal	cluster	370-390	None			Well removed from the monitoring program
18_BGMW03B	Principal	cluster	280-300	None			Well removed from the monitoring program
18_BGMW04A	Principal	cluster	286-306	None			Well removed from the monitoring program
18_BGMW19A	Principal	cluster	448-468	None			Well removed from the monitoring program
18_BGMW19B	Principal	cluster	400-420	None			Well removed from the monitoring program
18_BGMW19C	Principal	cluster	257-277	None			Well removed from the monitoring program
18_BGMW103	Principal	single	440-480	None			Well removed from the monitoring program
18_DP2-S	Principal	Nested	300-340	None			Well removed from the monitoring program
18_MCAS01-4	Principal	multiport	270-280	Westbay System			Well removed from the monitoring program
18_MCAS01-5	Principal	multiport	330-340	Westbay System			Well removed from the monitoring program
18_MCAS01-6	Principal	multiport	450-460	Westbay System			Well removed from the monitoring program

CDM

Former MCAS El Toro GW Monitoring - Round 23

2 of 5

Final September 2006

Table 2 (continued)

Summary of Changes to the Groundwater Monitoring Program Between Monitoring Rounds 22 and 23, September 2005 and March 2006 at Former MCAS El Toro, California

Well Identification	Well Completion	Well Type	Screen Interval (feet bgs)	Sampling System	Water Level	Sampled	Changes in Sampling Program from Round 22 to Round 23
18_MCAS01-7	Principal	multiport	540-550	Westbay System			Well removed from the monitoring program
18_MCAS02-4	Principal	multiport	370-380	Westbay System			Well removed from the monitoring program
18_MCAS02-5	Principal	multiport	420-430	Westbay System			Well removed from the monitoring program
18_MCAS02-6	Principal	multiport	490-500	Westbay System			Well removed from the monitoring program
18_MCAS02-7	Principal	multiport	550-560	Westbay System			Well removed from the monitoring program
18_MCAS02-8	Principal	multiport	620-630	Westbay System			Well removed from the monitoring program
18_MCAS03-4	Principal	multiport	340-350	Westbay System			Well removed from the monitoring program
18_MCAS03-5	Principal	multiport	420-430	Westbay System			Well removed from the monitoring program
18_MCAS03-6	Principal	multiport	490-500	Westbay System			Well removed from the monitoring program
18_MCAS04	Principal	single	181-238	None			Well removed from the monitoring program
18_MCAS06	Principal	single	167-222	None			Well removed from the monitoring program
18_MCAS07-3	Principal	multiport	350-360	Westbay System			Well removed from the monitoring program
18_MCAS07-4	Principal	multiport	440-450	Westbay System			Well removed from the monitoring program
18_MCAS07-5	Principal	multiport	510-520	Westbay System			Well removed from the monitoring program
18_MCAS07-6	Principal	multiport	800-810	Westbay System			Well removed from the monitoring program
18_MCAS07-7	Principal	multiport	910-920	Westbay System			Well removed from the monitoring program
18_MCAS07-8	Principal	multiport	980-990	Westbay System			Well removed from the monitoring program
18_MCAS07-9	Principal	multiport	1100-1110	Westbay System			Well removed from the monitoring program
18_MCAS08	Principal	single	392-410	None			Well removed from the monitoring program
18_MCAS09	Principal	single	372-445	None			Well removed from the monitoring program
18_MCAS10	Principal	single	355-375	None			Well removed from the monitoring program
24EX13C	Shallow	single	185-205	bladder pump			Well removed from the monitoring program
24EX12C	Principal	single	235-255	Bladder pump			Well removed from the monitoring program
SITE 24							
07_DBMW43A	Shallow	single	101-141	None			Well removed from the monitoring program
07_DBMW70	Shallow	single	125-165	None			Well removed from the monitoring program
07_DGMW91	Shallow	single	110-150	None	: "		Well removed from the monitoring program
08_DGMW73	Shallow	single	90-130	None			Well removed from the monitoring program
08_UGMW29A	Shallow	single	<i>7</i> 5-105	None			Well removed from the monitoring program
09_DGMW75	Shallow	single	114-154	bladder pump			Well removed from the monitoring program
10_BGMW77	Shallow	single	130-170	None			Well removed from the monitoring program

CDM

Table 2 (continued)
Summary of Changes to the Groundwater Monitoring Program Between Monitoring Rounds 22 and 23, September 2005 and March 2006 at Former MCAS El Toro, California

Well Identification	Well Completion	Well Type	Screen Interval (feet bgs)	Sampling System	Water Level	Sampled	Changes in Sampling Program from Round 22 to Round 23
12_UGMW31	Shallow	single	120-145	None			Well removed from the monitoring program
15_DBMW51	Shallow	single	125-165	bladder pump			Well removed from the monitoring program
18_BGMP06D	Shallow	multiport	168-178	Westbay System			Well removed from the monitoring program
18_BGMP06E	Shallow	multiport	105-115	Westbay System			Well removed from the monitoring program
18_BGMP08E	Shallow	multiport	63-73	Westbay System			Well removed from the monitoring program
18_BGMW03C	Shallow	cluster	222-242	None			Well removed from the monitoring program
18_BGMW101A	Shallow	single	68-98	bladder pump			Well removed from the monitoring program
18_BGMW19D	Shallow	cluster	150-170	bladder pump			Well removed from the monitoring program
18_BGMW19E	Shallow	cluster	98-138	None			Well removed from the monitoring program
18_DP2	Shallow	Nested	155-195	None			Well removed from the monitoring program
18_DW135	Shallow	cluster	115-135	bladder pump			Well removed from the monitoring program
18_MCAS01-1	Shallow	multiport	55-65	Westbay System			Well removed from the monitoring program
18_MCAS01-2	Shallow	multiport	145-155	Westbay System			Well removed from the monitoring program
18_MCAS01-3	Shallow	multiport	205-215	Westbay System			Well removed from the monitoring program
18_MCAS02-1	Shallow	multiport	40-50	Westbay System			Well removed from the monitoring program
18_MCAS02-2	Shallow	multiport	130-140	Westbay System			Well removed from the monitoring program
18_MCAS02-3	Shallow	multiport	200-210	Westbay System			Well removed from the monitoring program
18_MCAS03-1	Shallow	multiport	85-95	Westbay System		1	Well removed from the monitoring program
18_MCAS03-2	Shallow	multiport	160-170	Westbay System			Well removed from the monitoring program
18_MCAS03-3	Shallow	multiport	220-230	Westbay System			Well removed from the monitoring program
18_MCAS07-1	Shallow	multiport	90-100	Westbay System			Well removed from the monitoring program
18_MCAS07-2	Shallow	multiport	190-200	Westbay System		***	Well removed from the monitoring program
18_PS1	Shallow	single	102-122	bladder pump			Well removed from the monitoring program
18_PS2	Shallow	single	103-133	bladder pump			Well removed from the monitoring program
18_PS3A	Shallow	single	70-105	bladder pump			Well removed from the monitoring program
18_PS5	Shallow	single	106-126	None			Well removed from the monitoring program
18_PS6	Shallow	single	130-150	None			Well removed from the monitoring program
18_PS7	Shallow	single	106-126	bladder pump			Well removed from the monitoring program
18_PS8	Shallow	single	125-145	None			Well removed from the monitoring program
21_UGMW37	Shallow	single	89-130	None			Well removed from the monitoring program
22_DBMW47	Shallow	single	116-156	bladder pump			Well removed from the monitoring program

CDM

Table 2 (continued)

Summary of Changes to the Groundwater Monitoring Program Between Monitoring Rounds 22 and 23, September 2005 and March 2006 at Former MCAS El Toro, California

Well Identification	Well Completion	Well Type	Screen Interval (feet bgs)	Sampling System	Water Level	Sampled	Changes in Sampling Program from Round 22 to Round 23
24_IN03	Shallow	single	140-160	None			Well removed from the monitoring program
24EX10	Shallow	single	140-160	None			Well removed from the monitoring program
24EX11	Shallow	single	195-215	None			Well removed from the monitoring program
24EX12A	Shallow	single	140-160	None			Well removed from the monitoring program
24EX12B	Shallow	single	200-220	None			Well removed from the monitoring program
24EX13A	Shallow	single	145-165	None			Well removed from the monitoring program
24EX13B	Shallow	single	185-205	None			Well removed from the monitoring program
24EX14	Shallow	single	165-185	None			Well removed from the monitoring program
24EX3OB1	Shallow	single	105-150	None			Well removed from the monitoring program
24EX6OB1	Shallow	single	106-151	None			Well removed from the monitoring program
24EX9	Shallow	single	175-195	None			Well removed from the monitoring program
24MW05A	Shallow	single	unknown	None			Well removed from the monitoring program
24MW05B	Shallow	single	unknown	None			Well removed from the monitoring program
24MW06	Shallow	single	170-190	None			Well removed from the monitoring program
24MW07	Shallow	single	180-200	None			Well removed from the monitoring program
24NEW4	Shallow	single	108-148	bladder pump			Well removed from the monitoring program
24NEW7	Shallow	single	118-158	bladder pump			Well removed from the monitoring program
24NEW8	Shallow	single	122-162	bladder pump			Well removed from the monitoring program
				Totals:	35	- 28	

Notes:

bgs = below ground surface

Table 3
Summary of Historical Water Level Measurements and Groundwater Elevations
Former MCAS El Toro, California

	1	T	Survey Dat	a						
IRP Site	Well ID	Northing	Easting	Well TOC Elevation (feet MSL)	Well Depth (feet bgs)	Screen Interval (feet bgs)	Date Measured	Depth to Water (feet BTOC)	Groundwater Elevation (feet MSL)	Water Level Change (feet)
1	01_DGMW57			631.17		63 – 83	4-Apr-99	47.11	584.06	
				631.17			12-Jul-99	47.89	583.28	-0.78
		<u> </u>		ļ						
	01_DGMW58	<u> </u>	·	622.74		55 - 77	4-Apr-99	39.25	583.49	·
· · · · · · · · · · · · · · · · · · ·	043 (149.04			FF0.00		110 140	4.4.00	(0.00	(00.40	
	01MW101	<u> </u>		750.82 750.82		118 - 148	4-Apr-99 12-Jul-99	60.22 60.95	690.60	0.72
ļ	 	·		750.82			12-jui-99	60.95	689.87	-0.73
	01MW102			758.13		95 - 135	4-Apr-99	103.71	654.42	
		i		758.13			12-Jul-99	103.88	654.25	-0.17
	01_MW201	2196636.9	6124259.69	665.99	62	27 - 57	4-Apr-99	36.03	629.96	
				665.99			12-Jul-99	37.15	628.84	-1.12
				665.99			28-Feb-01	42.05	623.94	-4.90
				665.99			10-Sep-01	41.96	624.03	0.09
ļ				665.99	·		14-Маг-02	42.02	623.97	-0.06
				665.99			23-Sep-02	45.02	620.97	-3.00
				665.99			19-Mar-03	45.26	620.73	-0.24
	<u> </u>			665.99			11-Sep-03	45.73	620.26	-0.47
		l		665.99			18-Mar-04	45.15	620.84	0.58
				665.99			23-Sep-04	47.04	618.95	-1.89
-	 	i		665.99 665.99			16-Mar-05 2-Sep-05	41.54 37.91	624.45 628.08	5.50 3.63
		 		665.99			16-Mar-06	39.17	626.82	-1.26
				005.33			10-1/121-00	37.17	020.02	-1.20
2	02_DGMW59	2189877.3	6121115.39	506.91	94	69 – 89	12-Jan-96	50.95	455.96	
				506.91			6-Feb-96	51.22	455.69	-0.27
				506.91			28-Feb-96	48.75	458.16	2.47
				506.91			27-Mar-96	48.66	458.25	0.09
			-	506.91			30-Oct-96	53.28	453.63	-4.62
				506.91			26-Nov-96	51.58	455.33	1.70
				506,91			26-Dec-96	48.46	458.45	3.12
				506.91						
1		1	-				23-Jan-97	44.96	461.95	3.50
			· · · · · · · · · · · · · · · · · · ·	506.91	-		28-Feb-97	43.10	463.81	1.86
				506.91 506.91	_		28-Feb-97 27-Mar-97	43.10 46.20	463.81 460.71	1.86 -3.10
				506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97	43.10 46.20 50.50	463.81 460.71 456.41	1.86 -3.10 -4.30
				506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97	43.10 46.20 50.50 51.96	463.81 460.71 456.41 454.95	1.86 -3.10 -4.30 -1.46
				506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97	43.10 46.20 50.50 51.96 52.54	463.81 460.71 456.41 454.95 454.37	1.86 -3.10 -4.30 -1.46 -0.58
				506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97	43.10 46.20 50.50 51.96 52.54 53.50	463.81 460.71 456.41 454.95 454.37 453.41	1.86 -3.10 -4.30 -1.46
				506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97	43.10 46.20 50.50 51.96 52.54	463.81 460.71 456.41 454.95 454.37	1.86 -3.10 -4.30 -1.46 -0.58 -0.96
				506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98	43.10 46.20 50.50 51.96 52.54 53.50 52.01	463.81 460.71 456.41 454.95 454.37 453.41 454.90	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99 22-Apr-99	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63 53.93	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28 452.98	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62 -0.30
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99 22-Apr-99 12-Jul-99 9-Jun-00 19-Feb-01	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63 53.93 56.03 57.74 57.69	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28 452.98 450.88 449.17 449.22	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62 -0.30 -2.10 -1.71 0.05
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99 22-Apr-99 12-Jul-99 9-Jun-00 19-Feb-01 10-Sep-01	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63 53.93 56.03 57.74 57.69 60.45	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28 452.98 450.88 449.17 449.22 446.46	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62 -0.30 -2.10 -1.71 0.05 -2.76
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99 22-Apr-99 12-Jul-99 9-Jun-00 19-Feb-01 10-Sep-01 6-Mar-02	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63 53.93 56.03 57.74 57.69 60.45 62.71	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28 452.98 450.88 449.17 449.22 446.46 444.20	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62 -0.30 -2.10 -1.71 0.05 -2.76 -2.26
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99 22-Apr-99 12-Jul-99 9-Jun-00 19-Feb-01 10-Sep-01 6-Mar-02 12-Sep-02	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63 53.93 56.03 57.74 57.69 60.45 62.71 59.63	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28 452.98 450.88 449.17 449.22 446.46 444.20 447.28	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62 -0.30 -2.10 -1.71 0.05 -2.76 -2.26 3.08
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99 22-Apr-99 12-Jul-99 9-Jun-00 19-Feb-01 10-Sep-01 6-Mar-02 12-Sep-02 11-Sep-03	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63 53.93 56.03 57.74 57.69 60.45 62.71 59.63 58.80	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28 452.98 450.88 449.17 449.22 446.46 444.20 447.28 448.11	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62 -0.30 -2.10 -1.71 0.05 -2.76 -2.26 3.08 0.83
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99 22-Apr-99 12-Jul-99 9-Jun-00 19-Feb-01 10-Sep-01 6-Mar-02 12-Sep-02 11-Sep-03 15-Mar-04	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63 53.93 56.03 57.74 57.69 60.45 62.71 59.63 58.80 58.11	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28 452.98 450.88 449.17 449.22 446.46 444.20 447.28 448.11 448.80	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62 -0.30 -2.10 -1.71 0.05 -2.76 -2.26 3.08 0.83 0.69
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99 22-Apr-99 12-Jul-99 9-Jun-00 19-Feb-01 10-Sep-01 6-Mar-02 12-Sep-02 11-Sep-03 15-Mar-04 10-Sep-04	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63 53.93 56.03 57.74 57.69 60.45 62.71 59.63 58.80 58.11 61.76	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28 452.98 450.88 449.17 449.22 446.46 444.20 447.28 448.11 448.80 445.15	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62 -0.30 -2.10 -1.71 0.05 -2.76 -2.26 3.08 0.83 0.69 -3.65
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99 22-Apr-99 12-Jul-99 9-Jun-00 19-Feb-01 10-Sep-01 6-Mar-02 12-Sep-02 11-Sep-03 15-Mar-04 10-Sep-04 21-Sep-04	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63 53.93 56.03 57.74 57.69 60.45 62.71 59.63 58.80 58.11 61.76 61.76	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28 452.98 450.88 449.17 449.22 446.46 444.20 447.28 448.11 448.80 445.15	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62 -0.30 -2.10 -1.71 0.05 -2.76 -2.26 3.08 0.83 0.69 -3.65 -3.65
				506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91 506.91			28-Feb-97 27-Mar-97 27-Jun-97 11-Aug-97 24-Sep-97 6-Nov-97 9-Nov-98 19-Jan-99 22-Apr-99 12-Jul-99 9-Jun-00 19-Feb-01 10-Sep-01 6-Mar-02 12-Sep-02 11-Sep-03 15-Mar-04 10-Sep-04	43.10 46.20 50.50 51.96 52.54 53.50 52.01 53.63 53.93 56.03 57.74 57.69 60.45 62.71 59.63 58.80 58.11 61.76	463.81 460.71 456.41 454.95 454.37 453.41 454.90 453.28 452.98 450.88 449.17 449.22 446.46 444.20 447.28 448.11 448.80 445.15	1.86 -3.10 -4.30 -1.46 -0.58 -0.96 1.49 -1.62 -0.30 -2.10 -1.71 0.05 -2.76 -2.26 3.08 0.83 0.69 -3.65

Table 3 (continued)

Summary of Historical Water Level Measurements and Groundwater Elevations Former MCAS El Toro, California

		T	Survey Da	ta	l					
IRP Site	Well ID	Northing	Easting	Well TOC Elevation (feet MSL)	Well Depth (feet bgs)	Screen Interval (feet bgs)	Date Measured	Depth to Water (feet BTOC)	Groundwater Elevation (feet MSL)	Water Level Change (feet)
	OOD IFIAIO	2100454 (2	(100(10.05	404.60	100					
	02NEW2	2189454.63	6120618.85	494.68	100	75 - 95	30-Oct-96	65.83	428.85	<u> </u>
·				494.68			26-Nov-96	66.88	427.80	-1.05
				494.68			26-Dec-96	64.58	430.10	2.30
ļ		 		494.68			23-Jan-97	61.78	432.90	2.80
		1		494.68 494.68			28-Feb-97	60.00	434.68	1.78
		-		494.68			27-Mar-97 27-Jun-97	61.98 65.57	432.70 429.11	-1.98 -3.59
		 		494.68			11-Aug-97	66.58	429.11	-3.59
		 		494.68			24-Sep-97	67.00	427.68	-0.42
		-l		494.68			6-Nov-97	67.84	426.84	-0.42
		† 		494.68			9-Nov-98	61.74	432.94	6.10
				494.68			19-Jan-99	63.01	431.67	-1.27
		1		494.68			22-Apr-99	63.54	431.14	-0.53
				494.68			12-Jul-99	64.03	430.65	-0.49
				494.68			9-Jun-00	66.55	428.13	-2.52
				494.68			19-Feb-01	70.68	424.00	-4.13
				494.68			10-Sep-01	68.95	425.73	1.73
				494.68			6-Mar-02	70.78	423.90	-1.83
				494.68			12-Sep-02	72.61	422.07	-1.83
				494.68			11-Sep-03	71.95	422.73	0.66
		<u> </u>		494.68			15-Mar-04	71.16	423.52	0.79
		1		494.68			10-Sep-04	73.92	420.76	-2.76 /
				494.68			11-Mar-05	63.45	431.23	10.47
				494.68			2-Sep-05	66.28	428.40	-2.83
	<u> </u>			494.68			15-Mar-06	68.06	426.62	-1.78
	02NEW7	2189191.73	6119932.90	479.12	148	103-143	1-Apr-04	126.24	352.88	
				479.12			10-Sep-04	130.20	348.92	-3.96
				479.12			11-Mar-05	112.20	366.92	18.00
		l		479.12			2-Sep-05	120.09	359.03	-7.89
				479.12			14-Mar-06	122.45	356.67	-2.36
· · · · · · · · · · · · · · · · · · ·	02NEW8A	2190270.59	6120583.65	512.88	109	84 - 104	30-Oct-96	47.22	465.66	7-44
				512.88			26-Nov-96	46.96	465.92	0.26
				512.88			26-Dec-96	45.03	467.85	1.93
				512.88			23-Jan-97	42.65	470.23	2.38
				512.88			26-Feb-97	40.78	472.10	1.87
				512.88			27-Mar-97	41.78	471.10	-1.00
		ļ		512.88			27-Jun-97	45.12	467.76	-3.34
				512.88			11-Aug-97	48.14	464.74	-3.02
				512.88			24-Sep-97	46.64	466.24	1.50
				512.88			6-Nov-97	47.52	465.36	-0.88
				512.88			9-Nov-98	39.58	473.30	7.94
				512.88 512.88			19-Jan-99	40.92	471.96	-1.34
				512.88			22-Apr-99	41.47	471.41	-0.55 1.54
-	· · · · · · · · · · · · · · · · · · ·	 		512.88			12-Jul-99 21-Jun-00	43.03 45.90	469.85 466.98	-1.56 -2.87
				512.88			19-Feb-01	45.90	465.21	-2.87
	-1			512.88			10-Sep-01	48.26	464.62	-0.59
				512.88			6-Mar-02	49.81	463.07	-1.55
				512.88			12-Sep-02	51.35	461.53	-1.54
				512.88			11-Sep-03	57.00	455.88	-5.65
				512.88			15-Mar-04	53.91	458.97	3.09
				512.88			10-Sep-04	54.07	458.81	-0.16

Table 3 (continued) Summary of Historical Water Level Measurements and Groundwater Elevations Former MCAS El Toro, California

Northing Easting Well TO Elevation (rect MSL) Well To Chee the base Water Mater (feet MSL) Water Mater Mat			1	Survey Da	ta ·	1	<u></u>			· :	
		Well ID	Northing		Well TOC Elevation	Depth	Interval		Water	Elevation	Water Level Change (feet)
S12-88		02NEW8A (contin	nued)		512.88			10-Mar-05	49.71	463.17	4.36
					512.88			2-Sep-05	46.70	466.18	3.01
\$33.85 26-Nov-96 2-792 256.959 0-288 \$35.85 27-Date-96 26.75 367.10 1.17 \$35.85 27-Date-97 26.00 367.85 0.75 \$35.85 22-Date-97 26.00 367.85 0.75 \$35.85 27-Date-97 22.67 310.07 22.2 \$35.85 27-Date-97 22.67 310.07 22.2 \$35.85 27-Date-97 25.78 310.07 22.2 \$35.85 27-Date-97 25.78 310.07 22.6 \$35.85 27-Date-97 26.21 505.64 1.05 \$35.85 4-Nov-97 29.50 504.35 1.29 \$35.85 4-Nov-97 29.50 504.35 1.29 \$35.85 9-Nov-98 18.31 515.54 11.19 \$35.85 22-Date-99 20.31 515.24 1.10 \$35.85 12-Date-99 20.31 50.31 1.20 \$35.85 12-Date-99 20.31 50.31 1.20 \$35.85 12-Date-99 20.31 50.31 1.20 \$35.85 12-Date-90 23.55 50.51 1.20 \$35.85 12-Date-90 23.55 50.55 1.20					512.88			15-Mar-06	48.40	464.48	-1.70
\$33.85 26-Nov-96 2-792 256.959 0-288 \$35.85 27-Date-96 26.75 367.10 1.17 \$35.85 27-Date-97 26.00 367.85 0.75 \$35.85 22-Date-97 26.00 367.85 0.75 \$35.85 27-Date-97 22.67 310.07 22.2 \$35.85 27-Date-97 22.67 310.07 22.2 \$35.85 27-Date-97 25.78 310.07 22.2 \$35.85 27-Date-97 25.78 310.07 22.6 \$35.85 27-Date-97 26.21 505.64 1.05 \$35.85 4-Nov-97 29.50 504.35 1.29 \$35.85 4-Nov-97 29.50 504.35 1.29 \$35.85 9-Nov-98 18.31 515.54 11.19 \$35.85 22-Date-99 20.31 515.24 1.10 \$35.85 12-Date-99 20.31 50.31 1.20 \$35.85 12-Date-99 20.31 50.31 1.20 \$35.85 12-Date-99 20.31 50.31 1.20 \$35.85 12-Date-90 23.55 50.51 1.20 \$35.85 12-Date-90 23.55 50.55 1.20											
S33.85 22-Jan-97 26.07 307.10 1.17		02NEW11	2191693.28	6121769.81		70	45 - 65	30-Oct-96			<u></u>
\$33.85										L	
S33.85			-							l	
\$33.85 \$27-Mas 97 \$23.62 \$50.23 \$01.65										ļ	
		<u> </u>	-								
		-	-								
			-			 					
			-								
533.85		 	+								
533.85	. —		1								
533.85 12-jul-99 23.07 510.78 -1.96					533.85			21-Jan-99	20.03	513.82	-1.72
S33.85 22-jun-00 29.16 504.69 -6.09					533.85			22-Apr-99	21.11	512.74	-1.08
					533.85			12-Jul-99	23.07	510.78	-1.96
10 10 10 10 10 10 10 10					533.85			22-Jun-00	29.16	504.69	-6.09
S33.85 G-Mar-02 35.97 497.88 -3.43	<u> </u>			··	533.85			19-Feb-01	30.61	503.24	-1.45
S33.85 12.8ep-02											
S33,85 12-Sep-03 40.00 493,85 1.06											
S33.85 15-Mar-04 42.07 491.78 -2.07			<u> </u>								
S33.85 10.Sep-04 43.75 490.10 -1.68											
S33.85 10-Mar-05 29.78 504.07 13.97			ļ							-	
S33.85 S33.85 S2-Sep-05 25.93 507.92 3.85 S33.85 S33.85 S30.29 503.56 4.3.65 S30.29 S03.56 4.3.65 S30.20 S03.56 4.3.65 S30.20 S03.56 4.3.65 S30.20 S03.56 4.3.65 S30.20 S30.20 479.01 -1.41 S50.263 S2-Apr.99 24.02 478.61 0.40 S50.263 S2-Apr.99 37.63 469.93 3.80 S50.263 S50.263 S50.263 S50.263 S50.263 S50.263 S5											
S33.85											
02NEW15 2190376.17 6121038.87 502.63 70 25-65 9-Nov-98 22.21 480.42			1								
					030.00				55.27		
		02NEW15	2190376.17	6121038.87	502.63	70	25-65	9-Nov-98	22.21	480.42	
502.63 12-Jul-99 26.21 476.42 -2.19					502.63			19-Jan-99	23.62	479.01	-1.41
502.63 22-Jun-00 29.40 473.23 -3.19					502.63			22-Apr-99	24.02	478.61	-0.40
502.63					502.63			12-Jul-99	26.21	476.42	-2.19
502.63 10-Sep-01 32.09 470.54 1.11											
502.63 6-Mar-02 34.65 467.98 -2.56 502.63 12-Sep-02 37.63 465.00 -2.98 502.63 11-Sep-03 36.60 466.03 1.03 502.63 15-Mar-04 36.51 466.12 0.09 502.63 10-Sep-04 39.44 463.19 -2.93 502.63 10-Mar-05 25.80 476.83 13.64 502.63 2-Sep-05 27.10 475.53 -1.30 502.63 15-Mar-06 30.32 472.31 -3.22 02NEW16 2189892.22 6120699.46 491.78 70 25-65 9-Nov-98 35.72 456.06 491.78 19-Jan-99 37.11 454.67 -1.39 491.78 22-Apr-99 37.31 454.47 -0.20 491.78 12-Jul-99 39.43 452.35 -2.12 491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 442.1 447.57 -3.19 491.78 6-Mar-02 45.30 446.48 -1.09 <td></td> <td></td> <td>ļ <u></u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			ļ <u></u>								
502.63 12-Sep-02 37.63 465.00 -2.98											
502.63											
502.63 15-Mar-04 36.51 466.12 0.09 502.63 10-Sep-04 39.44 463.19 -2.93 502.63 10-Mar-05 25.80 476.83 13.64 502.63 2-Sep-05 27.10 475.53 -1.30 502.63 15-Mar-06 30.32 472.31 -3.22 602NEW16 2189892.22 6120699.46 491.78 70 25-65 9-Nov-98 35.72 456.06 491.78 19-Jan-99 37.11 454.67 -1.39 491.78 22-Apr-99 37.31 454.47 -0.20 491.78 12-Jul-99 39.43 452.35 -2.12 491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 44.21 447.57 -3.19 491.78 491.78 6-Mar-02 45.30 446.48 -1.09			 								
502.63 10-Sep-04 39.44 463.19 -2.93 502.63 10-Mar-05 25.80 476.83 13.64 502.63 2-Sep-05 27.10 475.53 -1.30 502.63 15-Mar-06 30.32 472.31 -3.22 02NEW16 2189892.22 6120699.46 491.78 70 25-65 9-Nov-98 35.72 456.06 491.78 19-Jan-99 37.11 454.67 -1.39 491.78 22-Apr-99 37.31 454.47 -0.20 491.78 12-Jul-99 39.43 452.35 -2.12 491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 44.21 447.57 -3.19 491.78 491.78 6-Mar-02 45.30 446.48 -1.09		 									
502.63 10-Mar-05 25.80 476.83 13.64 502.63 2-Sep-05 27.10 475.53 -1.30 502.63 15-Mar-06 30.32 472.31 -3.22 02NEW16 2189892.22 6120699.46 491.78 70 25-65 9-Nov-98 35.72 456.06 491.78 19-Jan-99 37.11 454.67 -1.39 491.78 22-Apr-99 37.31 454.47 -0.20 491.78 12-Jul-99 39.43 452.35 -2.12 491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 44.21 447.57 -3.19 491.78 6-Mar-02 45.30 446.48 -1.09			 								
502.63 2-Sep-05 27.10 475.53 -1.30 502.63 15-Mar-06 30.32 472.31 -3.22 02NEW16 2189892.22 6120699.46 491.78 70 25-65 9-Nov-98 35.72 456.06 491.78 19-Jan-99 37.11 454.67 -1.39 491.78 22-Apr-99 37.31 454.47 -0.20 491.78 12-Jul-99 39.43 452.35 -2.12 491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 44.21 447.57 -3.19 491.78 6-Mar-02 45.30 446.48 -1.09											
02NEW16 2189892.22 6120699.46 491.78 70 25-65 9-Nov-98 35.72 456.06 491.78 19-Jan-99 37.11 454.67 -1.39 491.78 22-Apr-99 37.31 454.47 -0.20 491.78 12-Jul-99 39.43 452.35 -2.12 491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 44.21 447.57 -3.19 491.78 6-Mar-02 45.30 446.48 -1.09											
O2NEW16 2189892.22 6120699.46 491.78 70 25-65 9-Nov-98 35.72 456.06 491.78 19-Jan-99 37.11 454.67 -1.39 491.78 22-Apr-99 37.31 454.47 -0.20 491.78 12-Jul-99 39.43 452.35 -2.12 491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 44.21 447.57 -3.19 491.78 6-Mar-02 45.30 446.48 -1.09											
491.78 19-Jan-99 37.11 454.67 -1.39 491.78 22-Apr-99 37.31 454.47 -0.20 491.78 12-Jul-99 39.43 452.35 -2.12 491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 44.21 447.57 -3.19 491.78 6-Mar-02 45.30 446.48 -1.09											
491.78 22-Apr-99 37.31 454.47 -0.20 491.78 12-Jul-99 39.43 452.35 -2.12 491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 44.21 447.57 -3.19 491.78 6-Mar-02 45.30 446.48 -1.09		02NEW16	2189892.22	6120699.46	491.78	70	25-65				
491.78 12-Jul-99 39.43 452.35 -2.12 491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 44.21 447.57 -3.19 491.78 6-Mar-02 45.30 446.48 -1.09											
491.78 19-Feb-01 41.02 450.76 -1.59 491.78 10-Sep-01 44.21 447.57 -3.19 491.78 6-Mar-02 45.30 446.48 -1.09											
491.78 10-Sep-01 44.21 447.57 -3.19 491.78 6-Mar-02 45.30 446.48 -1.09											
491.78 6-Mar-02 45.30 446.48 -1.09			 								
								~			
491.78 12-Sep-02 49.12 442.66 -3.82					491.78 491.78						
491.78 12-5ep-02			 · · · 								

Table 3 (continued)

Summary of Historical Water Level Measurements and Groundwater Elevations Former MCAS El Toro, California

			Survey Da	ta			[,
IRP Site	Well ID	Northing	Easting	Well TOC Elevation (feet MSL)	Well Depth (feet bgs)	Screen Interval (feet bgs)	Date Measured	Depth to Water (feet BTOC)	Groundwater Elevation (feet MSL)	Water Leve Change (feet)
C	2NEW16 (continue	d)	<u></u>	491.78	<u> </u>		15-Mar-04	42.89	448.89	6.26
	1	<u> </u>		491.78			10-Sep-04	58.70	433.08	-15.81
				491.78			11-Mar-05	36.96	454.82	21.74
				491.78			2-Sep-05	40.08	451.70	-3.12
				491.78			15-Mar-06	42.45	449.33	-2.37
	02_UGMW25			546.36		55 - 75	12-Jan-96	30.89	515.47	
	ļ	ļ		546.36			7-Feb-96	30.72	515.64	0.17
	<u> </u>	· · · · · · · · · · · · · · · · · · ·		546.36			28-Feb-96	29.60	516.76	1.12
		<u> </u>		546.36 546.36			27-Mar-96 30-Oct-96	29.25 36.32	517.11 510.04	-7.07
				546.36			26-Nov-96	36.40	509.96	-0.08
				546.36			26-Dec-96	35.52	510.84	0.88
		<u> </u>		546.36			23-Jan-97	33.80	512.56	1.72
				546.36			26-Feb-97	31.62	514.74	2.18
				546.36			27-Mar-97	31.64	514.72	-0.02
				546.36			27-Jun-97	34.50	511.86	-2.86
				546.36	,		11-Aug-97	36.08	510.28	-1.58
				546.36			24-Sep-97	37.35	509.01	-1.27
				546.36			6-Nov-97	38.68	507.68	-1.33
				546.36			9-Nov-98	26.23	520.13	12.45
				546.36			19-Jan-99	27.81	518.55	-1.58
				546.36			22-Apr-99	28.55	517.81	-0.74 /
				546.36			12-Jul-99	31.42	514.94	-2.87
3	03_DGMW64			418.28		245 - 285	11-Jan-96	231.49	186.79	
				418.28			26-Feb-96	230.46	187.82	1.03
			-	418.28			27-Mar-96	229.85	188.43	0.61
	-			418.28	-		31-Oct-96	229.35	188.93	0.50
				418.28			26-Nov-96	230.25	188.03	-0.90
				418.28			27-Dec-96	229.10	189.18	1.15
				418.28			24-Jan-97	228.13	190.15	0.97
				418.28			26-Feb-97	226.76	191.52	1.37
				418.28			27-Mar-97	227.00	191.28	-0.24
				418.28			26-Jun-97	227.50	190.78	-0.50
				418.28			11-Aug-97	227.96	190.32	-0.46
				418.28			24-Sep-97	227.11	191.17	0.85
				418.28			5-Nov-97	226.50	191.78	0.61
				418.28			9-Nov-98	221.08	197.20	5.42
				418.28			20-Jan-99	218.72	199.56	2.36
				418.28			22-Apr-99	218.43	199.85	0.29
		-		418.28			9-Jul-99	218.71	199.57	-0.28
	03_DGMW64A	2193462.76	6115384.64	418.16	255	210-250	9-Feb-01	219.08	199.08	
				418.16			11-Sep-01	218.77	199.39	0.31
				418.16			4-Mar-02	216.10	202.06	2.67
				418.16			11-Sep-02	220.60	197.56	-4.50
				418.16			6-Mar-03	222.50	195.66	-1.90
				418.16			11-Sep-03	222.20	195.96	0.30
				418.16			11-Mar-04	227.70	190.46	-5.50
				418.16			9-Sep-04	222.90	195.26	4.80
			i	418.16	1	1	9-Mar-05	222.83	195.33	0.07
-							1.6- 0-	201 00	107 11	4
			•	418.16 418.16			1-Sep-05 14-Mar-06	221.70 220.51	196.46 197.65	1.13

Table 3 (continued) Summary of Historical Water Level Measurements and Groundwater Elevations Former MCAS El Toro, California

Northing Easting Eas		T	I	Survey Dat	ta]					
411.90 26-Feb-96 222.70		Well ID	Northing	Easting	Elevation	Depth	Interval		Water	Groundwater Elevation (feet MSL)	Water Level Change (feet)
411.90 27.Mar.96 222.12 411.90 3.1-Oct-56 221.58 411.90 3.1-Oct-56 221.58 411.90 2c-Dec-96 221.24 411.90 2c-Dec-96 220.71 411.90 2c-Dec-96 220.80 411.90 2c-Dec-97 221.50 221.50 411.90 2c-Dec-97 221.50 221.50 2c-Dec-97 2c		03_DGMW65X			411.90		230 - 270	11-Jan-96	223.57	188.33	
411.90 31-Oct-96 221.58					411.90			26-Feb-96	222.70	189.20	0.87
					411.90			27-Mar-96	222.12	189.78	0.58
411.90 26-Dec-96 220.71								 		190.32	0.54
411.90 24-Jan-97 220.44 411.90 25-Feb-97 219.16 411.90 26-Feb-97 219.26 411.90 26-Jun-97 219.26 411.90 26-Jun-97 221.50 411.90 26-Jun-97 221.50 411.90 36-Jun-97 220.20 411.90 34-Sep-97 219.47 411.90 5-Nov-97 219.04 411.90 9-Nov-98 212.43 411.90 9-Nov-98 212.43 411.90 9-Jun-99 211.51 411.90 9-Jun-99 211.51 411.90 9-Jun-90 213.93 409.71 11-Sep-01 212.28 409.71 11-Sep-01 212.28 409.71 11-Sep-01 212.28 409.71 11-Sep-01 212.39 409.71 11-Sep-01 216.20 409.71 11-Mar-04 215.70 409.71 11-Mar-04 215.70 409.71 11-Mar-04 215.70 409.71 11-Mar-06 213.75 409.71					 				· · · · · · · · · · · · · · · · · · ·	190.66	0.34
										191.19	0.53
411.90 27-Mar-97 219.26										191.46	0.27
411.90 26-Jun-97 221.50 411.90 411.90 11-Aug-97 220.20 411.90 24-Sep-97 220.20 411.90 24-Sep-97 220.20 411.90 24-Sep-97 221.94 411.90 5-Nov-97 219.04 411.90 19-Jun-99 211.31 411.90 19-Jun-99 211.31 411.90 9-Jun-99 210.32 411.90 9-Jun-99 210.32 411.90 9-Jun-90 213.39 411.90 9-Jun-00 213.39 411.90 9-Jun-00 213.39 411.90 9-Jun-00 213.39 411.90 9-Jun-00 212.78 409.71 11-Sep-01 212.78 409.71 4-Mar-02 212.70 409.71 4-Mar-02 212.70 409.71 4-Mar-02 212.70 409.71 4-Mar-02 212.70 409.71 409.71 4-Mar-02 212.70 409.71 409.7										192.80	1.34
										192.64	-0.16
										190.40	-2.24
		ļ								191.70	1.30
411.90 9-Nov-98 212.43								· · · · · · · · · · · · · · · · · · ·		192.43	0.73
411.90		 								192.86	0.43
11.90 22-Apr.99 210.32 11.90 9.Jul-99 210.43 11.90 9.Jul-99 210.43 11.90 9.Jul-99 210.43 11.90 9.Jul-90 213.93 11.90 9.Jul-90 213.93 11.90 11.				-		ļ				199.47	6.61
	1									200.59	1.12
March Marc		 								201.58	0.99
03_DGMW65XA 2193155.07 6115142.45 409.71 248 201-235 9-Feb-01 212.78								·		201.47	-0.11
409.71					411.90			9-Jun-00	213.93	197.97	-3.50
409.71	 ;	03 DCMW65YA	2193155.07	6115142.45	400.71	2/8	201 225	0 Feb 01	212 70	107.03	
1409.71		US_DGMIVIUSAA	2175155.07	0113142.43		240	201-233			196.93	0.50
409.71 11-Sep-02 205.30 409.71 6-Mar-03 216.20 409.71 11-Sep-03 215.45 409.71 11-Mar-04 215.70 409.71 9-Sep-04 216.08 409.71 9-Sep-04 216.08 409.71 1-Sep-05 217.40 409.71 1-Sep-05 214.85 409.71 14-Mar-06 213.75 420.05 230-270 11-Jan-96 220.49 420.05 27-Feb-96 219.68 420.05 27-Feb-96 219.68 420.05 27-Mar-96 219.11 420.05 27-Mar-96 217.40 420.05 26-Nov-96 217.24 420.05 26-Nov-96 217.24 420.05 26-Dec-96 216.76 420.05 23-Jan-97 216.44 420.05 26-Feb-97 215.40 420.05 26-Feb-97 215.40 420.05 26-Feb-97 215.40 420.05 27-Mar-97 215.54 420.05 27-Mar-97 215.66 420.05 24-Sep-97 214.60 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 5-No										197.43	0.50
409.71 6-Mar-03 216.20 409.71 11-Sep-03 215.45 409.71 11-Mar-04 215.70 409.71 9-Sep-04 216.08 409.71 9-Mar-05 217.40 409.71 1-Sep-05 214.85 409.71 1-Sep-05 214.85 409.71 1-Sep-05 214.85 409.71 1-Sep-05 214.85 409.71 1-Jan-96 220.49 420.05 230 - 270 11-Jan-96 220.49 420.05 27-Feb-96 219.68 420.05 27-Feb-96 219.68 420.05 27-Mar-96 217.40 420.05 27-Mar-96 217.40 420.05 26-Nov-96 217.24 420.05 23-Jan-97 216.44 420.05 26-Feb-97 215.40 420.05 26-Jun-97 215.54 420.05 24-Sep-97 215.66 420.05 24-Sep-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 5-Nov-97 214.23		 								197.01	-0.42
409.71										204.41	7.40
409.71 11-Mar-04 215.70 409.71 9-Sep-04 216.08 409.71 9-Mar-05 217.40 409.71 1-Sep-05 214.85 214.85 409.71 1-Sep-05 214.85 213.75 214.85 220.49										193.51	-10.90
409.71 9-Sep-04 216.08 409.71 9-Mar-05 217.40 409.71 1-Sep-05 214.85 409.71 1-Sep-05 214.85 409.71 14-Mar-06 213.75 409.71 14-Mar-06 213.75 420.05 230 - 270 11-Jan-96 220.49 420.05 26-Feb-96 219.68 420.05 27-Feb-96 219.68 420.05 27-Mar-96 219.11 420.05 27-Mar-96 219.11 420.05 26-Nov-96 217.40 420.05 26-Nov-96 217.24 420.05 26-Dec-96 216.76 420.05 26-Dec-96 216.76 420.05 26-Feb-97 215.40 420.05 26-Jan-97 215.40 420.05 26-Jan-97 215.54 420.05 26-Jan-97 215.54 420.05 26-Jan-97 215.66 420.05 24-Sep-97 214.60 420.05 24-Sep-97 214.60 420.05 24-Sep-97 214.60 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 5-Nov-97 214.23 420.05 5-Nov-97 214.23 420.05 5-Nov-98 207.74 420.05 420.05 5-Nov-98 207.74 420.05 420.05 420.05 5-Nov-98 207.74 420.05										194.26	0.75 -0.25
409.71 9-Mar-05 217.40 409.71 1-Sep-05 214.85 409.71 14-Mar-06 213.75 214.85 230 - 270 11-Jan-96 220.49	•									194.01 193.63	-0.25
409.71		 					· · · · · · · · · · · · · · · · · · ·			192.31	-1.32
409.71										194.86	2.55
03_UGMW26 420.05 230 - 270 11-Jan-96 220.49 420.05 26-Feb-96 219.68 420.05 27-Feb-96 219.68 420.05 27-Mar-96 219.11 420.05 31-Oct-96 217.40 420.05 26-Nov-96 217.24 420.05 26-Dec-96 216.76 420.05 23-Jan-97 216.44 420.05 26-Feb-97 215.40 420.05 27-Mar-97 215.54 420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74		-								195.96	1.10
420.05 26-Feb-96 219.68 420.05 27-Feb-96 219.68 420.05 27-Mar-96 219.11 420.05 31-Oct-96 217.40 420.05 26-Nov-96 217.24 420.05 26-Dec-96 216.76 420.05 23-Jan-97 216.44 420.05 26-Feb-97 215.40 420.05 27-Mar-97 215.54 420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74								11 1/100		175.70	1.10
420.05 26-Feb-96 219.68 420.05 27-Feb-96 219.68 420.05 27-Mar-96 219.11 420.05 31-Oct-96 217.40 420.05 26-Nov-96 217.24 420.05 26-Dec-96 216.76 420.05 23-Jan-97 216.44 420.05 26-Feb-97 215.40 420.05 27-Mar-97 215.54 420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74		03_UGMW26			420.05		230 - 270	11-Jan-96	220,49	199.56	•
420.05 27-Feb-96 219.68 420.05 27-Mar-96 219.11 420.05 31-Oct-96 217.40 420.05 26-Nov-96 217.24 420.05 26-Dec-96 216.76 420.05 23-Jan-97 216.44 420.05 26-Feb-97 215.40 420.05 27-Mar-97 215.54 420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74					420.05					200.37	0.81
420.05 31-Oct-96 217.40 420.05 26-Nov-96 217.24 420.05 26-Dec-96 216.76 420.05 26-Dec-96 216.76 420.05 23-Jan-97 216.44 420.05 26-Feb-97 215.40 420.05 26-Feb-97 215.54 420.05 26-Jun-97 215.54 420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74 420.05 420.05 9-Nov-98 207.74 420.05			-		420.05					200.37	0.00
420.05 26-Nov-96 217.24 420.05 26-Dec-96 216.76 420.05 23-Jan-97 216.44 420.05 26-Feb-97 215.40 420.05 27-Mar-97 215.54 420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74					420.05			27-Mar-96	219.11	200.94	0.57
420.05 26-Dec-96 216.76 420.05 23-Jan-97 216.44 420.05 26-Feb-97 215.40 420.05 27-Mar-97 215.54 420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74					420.05			31-Oct-96	217.40	202.65	1.71
420.05 23-Jan-97 216.44 420.05 26-Feb-97 215.40 420.05 27-Mar-97 215.54 420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74					420.05			26-Nov-96	217.24	202.81	0.16
420.05 26-Feb-97 215.40 420.05 27-Mar-97 215.54 420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74					420.05			26-Dec-96	216.76	203.29	0.48
420.05 27-Mar-97 215.54 420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74					420.05			23-Jan-97	216.44	203.61	0.32
420.05 26-Jun-97 215.90 420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74					420.05			26-Feb-97	215.40	204.65	1.04
420.05 11-Aug-97 215.66 420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74								27-Mar-97	215.54	204.51	-0.14
420.05 24-Sep-97 214.60 420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74										204.15	-0.36
420.05 5-Nov-97 214.23 420.05 9-Nov-98 207.74										204.39	0.24
420.05 9-Nov-98 207.74		ļ								205.45	1.06
										205.82	0.37
										212.31	6.49
					420.05			19-Jan-99	206.53	213.52	1,21
420.05 22-Apr-99 205.26										214.79	1,27
420.05 12-Jul-99 205.18			·							214.87	0.08
420.05 19-Jun-00 210.49										209.56	-5.31
420.05 10-Sep-01 209.90					420.05			10-Sep-01	209.90	210.15	0.59
03_UGMW26A 421.73 195-235 28-Feb-01 219.03		OS LICIMIANS			A21 72		105 225	20 Esh 01	210.02	202.70	
		03_0GIVIVY20A					173-233			202.70	11 70
421.73 11-Sep-01 207.24 421.73 5-Mar-02 208.00										214.49	-0.76

Table 3 (continued)

Summary of Historical Water Level Measurements and Groundwater Elevations Former MCAS El Toro, California

	<u> </u>	T	Survey Dat	ta				·····		
IRP Site	Well ID	Northing	Easting	Well TOC Elevation (feet MSL)	Well Depth (feet bgs)	Screen Interval (feet bgs)	Date Measured	Depth to Water (feet BTOC)	Groundwater Elevation (feet MSL)	Water Level Change (feet)
03_1	UGMW26A (continu	ued)		421.73			11-Sep-02	208.50	213.23	-0.50
		I		421.73			6-Mar-03	211.20	210.53	-2.70
	04_DBMW40	2192624.58	6115010.87	400.04	265	220 - 260	11-Jan-96	212.07	187.97	
				400.04			26-Feb-96	211.14	188.90	0.93
				400.04			27-Mar-96	210.66	189.38	0.48
				400.04			31-Oct-96	210.11	189.93	0.55
				400.04			26-Nov-96	209.58	190.46	0.53
				400.04			26-Dec-96	209.08	190.96	0.50
				400.04			24-Jan-97	208.92	191.12	0.16
				400,04			27-Feb-97	208.95	191.09	-0.03
	-			400.04			27-Mar-97	208.12	191.92	0.83
		<u> </u>		400.04 400.04			26-Jun-97 11-Aug-97	207.25 208.90	192.79 191.14	-1.65
		<u> </u>		400.04			24-Sep-97	208.90	191.14	0.79
		<u> </u>	··· · · · · · · · · · · · · · · · · ·	400.04			6-Nov-97	207.44	192.60	0.67
				400.04			9-Nov-98	201.15	198.89	6.29
				400.04			19-Jan-99	200.22	199.82	0.93
				400.04			22-Apr-99	199.08	200.96	1.14
				400.04			9-Jul-99	199.54	200.50	-0.46
				400.04			9-Jun-00	199.14	200.90	0.40
				400.04			9-Feb-01	198.59	201.45	0.55
				400.04			10-Sep-01	198.97	201.07	-0.38
				400.04			5-Mar-02	198.83	201,21	0.14
				400.04			12-Sep-02	200.62	199.42	-1.79
				400.04			6-Mar-03	200.82	199.22	-0.20
				400.04			11-Sep-03	201.95	198.09	-1.13
				400.04			15-Mar-04	201.91	198.13	0.04
				400.04			9-Sep-04	201.80	198.24	0.11
				400.04			10-Mar-05	202.08	197.96	-0.28
				400.04 400.04			1-Sep-05	200.01	200.03 199.06	2.07 -0.97
				400.04			14-Mar-06	200.98	199.06	-0.97
	04_DGMW66			401.10		250 - 290	11-Jan-96	212.93	188.17	
	01_00111100			401.10		200 270	26-Feb-96	211.91	189.19	1.02
				401.10		•	27-Mar-96	211.42	189.68	0.49
				401.10			31-Oct-96	211.64	189.46	-0.22
				401.10			26-Nov-96	210.76	190.34	0.88
				401.10			26-Dec-96	210.12	190.98	0.64
				401.10			24-Jan-97	209.82	191.28	0.30
				401.10			27-Feb-97	210.25	190.85	-0.43
				401.10			27-Mar-97	209.26	191.84	0.99
		ļ . .		401.10			26-Jun-97	208.10	193.00	1.16
				401.10			11-Aug-97	210.26	190.84	-2.16
				401.10			25-Sep-97	209.49	191.61	0.77
				401.10			5-Nov-97	204.43	196.67	5.06
				401.10			9-Nov-98 19-Jan-99	201.93 201.13	199.17	2.50 0.80
	· · · · · · · · · · · · · · · · · · ·			401.10 401.10			19-jan-99 22-Apr-99	201.13	199.97 201.01	1.04
				401.10			9-Jul-99	200.09	200.38	-0.63
				401.10			9-Feb-01	199.65	201.45	1.07
				401.10			10-Sep-01	200.14	200.96	-0.49
										
			1							,
	04_DGMW66A	2192711.39	6114919.65	399.09	235	190-230	11-Sep-01	200.38	198.71	

Table 3 (continued) Summary of Historical Water Level Measurements and Groundwater Elevations Former MCAS El Toro, California

· · · · · · · · · · · · · · · · · · ·	T		Survey Da	ta	1	<u> </u>	Ι	· · · · · · · · · · · · · · · · · · ·	l	
IRP Site	Well ID	Northing	Easting	Well TOC Elevation (feet MSL)	Well Depth (feet bgs)	Screen Interval (feet bgs)	Date Measured	Depth to Water (feet BTOC)	Groundwater Elevation (feet MSL)	Water Level Change (feet)
04_	DGMW66A (contin	ued)		399.09			11-Sep-02	201.70	197.39	-0.80
		,		399.09			6-Mar-03	202.40	196.69	-0.70
				399.09			9-Sep-03	203.12	195.97	-0.72
				399.09			11-Mar-04	203.40	195.69	-0.28
	<u> </u>			399.09			9-Sep-04	203.84	195.25	-0.44
				399.09			9-Mar-05	203.89	195.20	-0.05
				399.09			1-Sep-05	202.95	196.14	0.94
	ļ	<u> </u>		399.09			14-Mar-06	201.91	197.18	1.04
	04_UGMW63	2192442.16	6115457.09	404.11	280	235 - 275	11-Jan-96	212.50	191.61	
				404.11			30-Jan-96	212.31	191.80	0.19
				404,11			28-Feb-96	211.72	192.39	0.59
				404.11			27-Mar-96	211.22	192.89	0.50
		1		404.11			31-Oct-96	210.14	193.97	1.08
				404,11			26-Nov-96	209.82	194.29	0.32
				404.11			26-Dec-96	209.30	194.81	0.52
				404.11			24-Jan-97	209.16	194.95	0.14
				404.11			26-Feb-97	207.80	196.31	1.36
				404.11			27-Mar-97	207.80	196.31	0.00
				404.11		· · · · · · · · · · · · · · · · · · ·	26-Jun-97	208.67	195.44	-0.87
				404,11			11-Aug-97	208.64	195.47	0.03
		ļl		404.11			25-Sep-97	207.75	196.36	0.89
				404.11			5-Nov-97	207.38	196.73	0.37
		ļ		404.11			9-Nov-98	200.32	203.79	7.06
		l		404.11			19-Jan-99	199.07	205.04	1.25
				404.11			22-Apr-99	197.96	206.15	1.11
				404.11 404.11			9-Jul-99	198.21	205.90	-0.25
		1		404.11			9-Jun-00 9-Feb-01	197.79 197.22	206.32	0.42
				404.11			10-Sep-01	197.33	206.78	-0.11
		 		404.11			5-Mar-02	197.42	206.69	-0.09
				404.11			12-Sep-02	199.46	204.65	-2.04
				404.11			6-Mar-03	200.01	204.1	-0.55
				404.11			11-Sep-03	201.20	202.91	-1.19
				404.11			15-Mar-04	201.20	202.91	0.00
				404.11			10-Sep-04	201.80	202.31	-0.60
				404.11			10-Mar-05	201.51	202.6	0.29
				404.11			1-Sep-05	200.55	203.56	0.96
				404.11			16-Mar-06	199.30	204.81	1.25
5	05_DBMW41			424.77		182 - 222	12-Jan-96	163.12	261.65	
	02_D0141441			424.77		102 - 222	7-Feb-96	163.12	261.65	0.30
				424.77			28-Feb-96	162.82	261.95	0.00
				424.77			27-Mar-96	162.45	262.32	0.37
		├ -		424.77			31-Oct-96	161.60	263.17	0.85
				424.77			26-Nov-96	161.16	263.61	0.44
				424.77			26-Dec-96	161.12	263.65	0.04
				424.77			24-Jan-97	161.16	263.61	-0.04
				424.77			27-Feb-97	159.81	264.96	1.35
				424.77			27-Mar-97	159.86	264.91	-0.05
				424.77			26-Jun-97	159.56	265.21	0.30
				424.77			11-Aug-97	159.72	265.05	-0.16
				424.77			25-Sep-97	159.24	265.53	0.48
				424.77			6-Nov-97	159.52	265.25	-0.28
				424.77			9-Nov-98	153.72	271.05	5.80

Table 3 (continued)

Summary of Historical Water Level Measurements and Groundwater Elevations Former MCAS El Toro, California

	T	Υ	Survey Da	ta	T	T			<u> </u>	
IRP Site	Well ID	Northing	Easting	Well TOC Elevation (feet MSL)	Well Depth (feet bgs)	Screen Interval (feet bgs)	Date Measured	Depth to Water (feet BTOC)	Groundwater Elevation (feet MSL)	Water Level Change (feet)
05	_DBMW41 (continu	ed)		424.77			19-Jan-99	153.45	271.32	0.27
				424.77			22-Apr-99	153.02	271.75	0.43
				424.77			12-Jul-99	153.21	271.56	-0.19
				424.77			9-Jun-00	154.25	270.52	-1.04
	05_DBMW41A	2188838.68	6117555.99	426.21	190	145-185	9-Feb-01	157.70	268.51	
				426.21			19-Sep-01	157.15	269.06	0.55
				426.21			4-Mar-02	158.80	267.41	-1.65
				426.21 426.21			11-Sep-02	155.80	270.41	3.00
				426.21			6-Mar-03	163.00	263.21	-7.20
				426.21			10-Sep-03 11-Mar-04	162.50 163.81	263.71 262.4	0.50 -1.31
	 			426.21			9-Sep-04	164.57	261.64	-0.76
	 			426.21			11-Mar-05	164.42	261.79	0.15
				426.21			1-Sep-05	161.85	264.36	2.57
	 			426.21			14-Mar-06	161.10	265.11	0.75
	05_DGMW67			428.56		187 - 227	12-Jan-96	166.52	262.04	
				428.56			9-Feb-96	166.26	262.30	0.26
				428.56			27-Feb-96	166.19	262.37	0.07
				428.56			27-Mar-96	165.85	262.71	0.34
				428.56			31-Oct-96	165.34	263.22	0.51
				428.56			26-Nov-96	164.80	263.76	0.54
				428.56			26-Dec-96	164.68	263.88	0.12
				428.56			24-Jan-97	164.66	263.90	0.02
				428.56			27-Feb-97	· 163.20	265.36	1.46
				428.56			27-Mar-97	163.28	265.28	-0.08
				428.56			26-Jun-97	163.20	265.36	0.08
				428.56			11-Aug-97	163.30	265.26	-0.10
				428.56			25-Sep-97	162.80	265.76	0.50
				428.56			7-Nov-97	163.12	265.44	-0.32
			· · · · · ·	428.56			9-Nov-98	157.86	270.70	5.26
				428.56 428.56			19-Jan-99	157.43	271.13	0.43
	-			428.56			22-Apr-99 12-Jul-99	157.09 157.29	271.47	-0.20
	<u> </u>			428.56			9-Jun-00	158.51	270.05	-1.22
				120.50			<i>y</i> -jun-00	130.51	270.03	-1.22
	05_DGMW67A	2189097.05	6117685.05	430.02	195	150-190	9-Feb-01	161.03	268.99	
				430.02			20-Sep-01	160.85	269.17	0.18
				430.02			4-Mar-02	161.20	268.82	-0.35
				430.02			11-Sep-02	160.90	269,12	0.30
				430.02	i		6-Mar-03	166.65	263.37	-5.75
				430.02			10-Sep-03	164.75	265.27	1.90
				430.02			11-Mar-04	166.43	263.59	-1.68
				430.02	1		9-Sep-04	167.25	262.77	-0.82
				430.02			11-Mar-05	166.79	263.23	0.46
				430.02			1-Sep-05	164.05	265.97	2.74
				430.02			15-Mar-06	163.29	266.73	0.76
		T		416.95		190 - 210	12-Jan-96	168.71	248.24	
	05_DGMW68									
	05_DGMW68			416.95			26-Feb-96	168.11	248.84	0.60
	05_DGMW68			416.95			27-Feb-96	168.11	248.84	0.00
	05_DGMW68									

Table 3 (continued) Summary of Historical Water Level Measurements and Groundwater Elevations Former MCAS El Toro, California

	T	1	Survey Dat	a .	T	Ι	<u> </u>		1	·.
IRP Site	Well ID	Northing	Easting	Well TOC Elevation (feet MSL)	Well Depth (feet bgs)	Screen Interval (feet bgs)	Date Measured	Depth to Water (feet BTOC)	Groundwater Elevation (feet MSL)	Water Level Change (feet)
05	_DGMW68 (continu	ed)		416.95			26-Dec-96	165.52	251.43	0.16
				416.95			24-Jan-97	161.51	255.44	4.01
				416.95			27-Feb-97	165.40	251.55	-3.89
				416.95			27-Mar-97	164.82	252.13	0.58
				416.95			26-Jun-97	164.34	252.61	0.48
		 		416.95			11-Aug-97	164.22	252.73	0.12
				416.95			25-Sep-97	163.47	253.48	0.75
				416.95	-		6-Nov-97	163.65	253.30	-0.18
ļ	ļ . 			416.95			9-Nov-98	158.84	258.11	4.81
ļ	 			416.95 416.95	ļ		19-Jan-99	158.08	258.87	0.76
 	 			416.95			22-Apr-99	157.07 156.95	259.88 260.00	1.01 0.12
				416.95			12-Jul-99 9-Jun-00	157.77	259.18	-0.82
		<u>-</u> .		410.75			9-Jun-00	157,77	239.16	-0.82
	05_DGMW68A	2188678.69	6117264.34	419.61	192	146-186	9-Feb-01	161.04	258.57	
				419.61			20-Sep-01	160.85	258.76	0.19
				419.61			4-Mar-02	162.10	257.51	-1.25
				419.61			11-Sep-02	150.40	269.21	11.70
				419.61			6-Mar-03	166.10	253.51	-15.70
				419.61			10-Sep-03	166.05	253.56	0.05
				419.61			11-Mar-04	167.34	252.27	-1.29
				419.61			9-Sep-04	168.14	251.47	-0.80
				419.61			11-Mar-05	168.36	251.25	-0.22
				419.61			1-Sep-05	166.45	253.16	1.91
·		-		419.61			14-Mar-06	165.29	254.32	1.16
	05NEW1	2188362.65	6116947.67	407.77	208	163 - 203	31-Oct-96	164.04	243.73	
 	USINEVVI	2186302.03	0110947.07	407.77	200	103+203	26-Nov-96	163.36	243.73	0.68
<u> </u>				407.77			26-Nov-96 26-Dec-96	162.98	244.41	0.38
				407.77			27-Feb-97	162.05	245.72	0.93
				407.77			27-Mar-97	162.41	245.36	-0.36
1				407.77			26-Jun-97	162.23	245.54	0.18
				407.77			11-Aug-97	161.96	245.81	0.27
				407.77		•	25-Sep-97	160.93	246.84	1.03
				407.77			6-Nov-97	161.08	246.69	-0.15
				407.77			9-Nov-98	158.33	249.44	2.75
				407.77			19-Jan-99	157.50	250.27	0.83
	· · · · · · · · · · · · · · · · · · ·			407.77			22-Apr-99	156.33	251.44	1.17
				407.77			12-Jul-99	156.15	251.62	0.18
·				407.77			9-Jun-00	156.33	251.44	-0.18
				407.77			9-Feb-01	157.16	250.61	-0.83
<u> </u>				407.77 407.77	-		10-Sep-01 5-Mar-02	157.49	250.28	-0.33
				407.77			5-Mar-02 12-Sep-02	158.09 158.65	249.68 249.12	-0.60 -0.56
·				407.77			6-Mar-03	160.19	247.58	-0.56
<u> </u>				407.77			11-Sep-03	161.35	246.42	-1.16
-	· · · · · · · · · · · · · · · · · · ·			407.77			12-Mar-04	164.69	243.08	-3.34
	· · ·			407.77		-	10-Sep-04	163.12	244.65	1.57
				407.77			11-Mar-05	163.88	243.89	-0.76
				407.77			1-Sep-05	163.00	244.77	0.88
				407.77			15-Mar-06	161.84	245.93	1.16
	05_UGMW27			437.86		198 - 238	11-Jan-96	169.84	268.02	
				437.86			29-Jan-96	169.72	268.14	0.12
		·		437.86			28-Feb-96	169.70	268.16	0.02

Table 3 (continued) Summary of Historical Water Level Measurements and Groundwater Elevations Former MCAS El Toro, California

			Survey Da	ta	<u> </u>					
IRP Site	Well ID	Northing	Easting	Well TOC Elevation (feet MSL)	Well Depth (feet bgs)	Screen Interval (feet bgs)	Date Measured	Depth to Water (feet BTOC)	Groundwater Elevation (feet MSL)	Water Level Change (feet)
05	_UGMW27 (continu	ed)		437.86			27-Mar-96	169.32	268.54	0.38
		I		437.86			31-Oct-96	168.92	268.94	0.40
		-		437.86			26-Nov-96	168.40	269.46	0.52
				437.86			26-Dec-96	168.34	269.52	0.06
				437.86			23-Jan-97	168.26	269.60	0.08
				437.86			27-Feb-97	166.85	271.01	1.41
				437.86			27-Mar-97	166.62	271.24	0.23
				437.86			27-Jun-97	166.64	271.22	-0.02
				437.86			11-Aug-97	166.98	270.88	-0.34
				437.86			24-Sep-97	166.57	271.29	0.41
				437.86			6-Nov-97	166.92	270.94	-0.35
				437.86			9-Nov-98	160.78	277.08	6.14
				437.86			19-Jan-99	160.85	277.01	-0.07
				437.86			22-Apr-99	160.58	277.28	0.27
				437.86			9-Jul-99	161.11	276.75	-0.53
	OF LICY GUOST			420.17		155 105	0.5-1-01	1/4 51	274.66	
	05_UGMW27A			439.17		155-195	9-Feb-01	164.51 163.94	274.66	0.57
				439.17			10-Sep-01	165.10	275.23	
				439.17 439.17			4-Mar-02	165.30	274.07 273.87	-1.16 -0.20
				439.17			11-Sep-02 20-Mar-03	165.40	273.77	-0.20
				439.17			20-1/101-03	103.40	2/3.//	-0.10
17	17_DGMW82	2191368.2	6119115.35	442.12	260	235 - 255	12-Jan-96	189.55	252.57	
				442.12			9-Feb-96	192.04	250.08	-2.49
			-	442.12			28-Feb-96	192.04	250.08	0.00
				442.12			31-Oct-96	185.60	256.52	6.44
				442.12			26-Nov-96	185.50	256.62	0.10
				442.12			26-Dec-96	185.22	256.90	0.28
				442.12			24-Jan-97	184.43	257.69	0.79
				442.12			12-Aug-97	183.64	258.48	0.79
				442.12	•		9-Nov-98	187.13	254.99	-3.49
			·	442.12			19-Jan-99	176.93	265.19	10.20
				442.12			22-Apr-99	175.90	266.22	1.03
				442.12			12-Jul-99	175.09	267.03	0.81
				442.12			22-Jun-00	173.98	268.14	1.11
				442.12			27-Feb-01	185.67	256.45	-11.69
				442.12			10-Sep-01	173.15	268.97	12.52
				442.12			14-Mar-02	173.96	268.16	-0.81
				442.12			Sep-02	NA ⁴	270.25	2.09
				442.12			3-Mar-03	NM ⁴	NM ⁴	NM ⁴
				442.12			11-Sep-03	179.77	262.35	-7.90
				442.12			15-Mar-04	178.61	263.51	1.16
				442.12 442.12			21-Sep-04	182.50 182.73	259.62	-3.89
				442.12 442.12			11-Mar-05 2-Sep-05	182.73	259.39 261.12	-0.23 1.73
				442.12			2-Sep-05 15-Mar-06	179.99	261.12	1.73
			•	772.12			43-14141-00	1/ 2.77	202.13	1.01
	17NEW1	2191653.03	6118812,31	431.93	231	186 - 226	31-Oct-96	183.88	248.05	
				431.93			26-Nov-96	183.60	248.33	0.28
				431.93			26-Dec-96	183.22	248.71	0.38
				431.93			24-Jan-97	183.75	248.18	-0.53
				431.93			27-Feb-97	181.98	249.95	1.77
				431.93			27-Mar-97	182.10	249.83	-0.12
				431.93			27-Jun-97	181.90	250.03	0.20
		 		431.93	····	 	12-Aug-97	181.04	250.89	0.86

Table 3 (continued)

Summary of Historical Water Level Measurements and Groundwater Elevations Former MCAS El Toro, California

			Survey Da	ta						
IRP Site	Well ID	Northing	Easting	Well TOC Elevation (feet MSL)	Well Depth (feet bgs)	Screen Interval (feet bgs)	Date Measured	Depth to Water (feet BTOC)	Groundwater Elevation (feet MSL)	Water Level Change (feet)
1	7NEW1 (continue	d)		431.93			24-Sep-97	180.05	251.88	0.99
		1		431.93			6-Nov-97	184.02	247.91	-3.97
				431.93			9-Nov-98	174.68	257.25	9.34
				431.93			19-Jan-99	173.34	258.59	1.34
				431.93			22-Apr-99	171.77	260.16	1.57
				431.93			12-Jul-99	170.87	261.06	0.90
				431.93			22-Jun-00	173.46	258.47	-2.59
				431.93			27-Feb-01	173.58	258.35	-0.12
			•	431.93			10-Sep-01	172.90	259.03	0.68
				431.93			14-Mar-02	173.76	258.17	-0.86
				431.93			12-Sep-02	170.87	261.06	2.89
		1		431.93			19-Mar-03	173.55	. 258.38	-2.68
		İ		431.93			11-Sep-03	174.91	257.02	-1.36
				431.93			15-Mar-04	174.11	257.82	0.80
				431.93			21-Sep-04	175.80	256.13	-1.69
				431.93			11-Mar-05	178.10	253.83	-2.30
				431.93	·		2-Sep-05	176.95	254.98	1.15
				431.93			15-Mar-06	175.65	256.28	1.30
	17NEW2			551.36		83 - 123	31-Oct-96	87.95	463.41	
-				551.36			26-Nov-96	88.01	463.35	-0.06
		ŀ		551.36			26-Dec-96	87.88	463.48	0.13
			·	551.36			24-Jan-97	88.56	462.80	-0.68
	•			551.36			27-Feb-97	87.53	463.83	1.03
				551.36			27-Mar-97	87.72	463.64	-0.19
				551.36			12-Aug-97	88.00	463.36	-0.28
				551.36			24-Sep-97	87.50	463.86	0.50
				551,36			6-Nov-97	87.66	463.70	-0.16
		L		551.36			9-Nov-98	86.22	465.14	1.44
				551.36			29-Jan-99	86.09	465.27	0.13
				551.36			22-Apr-99	85.89	465.47	0.20
				551.36			12-Jul-99	85.79	465.57	0.10

Notes

IRP = Installation Restoration Program

bgs = below ground surface

MSL = mean sea level

TOC = top of well casing, NA = not available or not applicable.

BTOC = below top of casing

NM = not measured

Bold wells were measured during Round 23 $\,$

Table 4
Historical Summary of Groundwater Sampling Parameters
Former MCAS El Toro, California

Well ID	Date	Temp (°C)	рН	Specific Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU
SITE 1							
01-MW201	3/18/2004	21.47	7.61	0.65	4.99	197	1.9
	9/23/2004	22.39	7.38	0.654	6.55	101	2.99
	3/16/2005	21.56	7.43	0.713	6.21	148	1.6
	9/20/2005	22.36	7.28	0.061	5.31	43.4	1.37
	3/16/2006	21.99	7.76	0.576	7.02	141	0.15
SITE 2							
02_DGMW59	3/19/2004	19.61	7.67	0.988	2.14	2.09	1.1
	9/21/2004	21.38	6.62	1.346	2.63	233	0.98
	3/29/2005	18.39	8.04	0.701	5.27	165	6.8
	9/20/2005	21.1	7.14	1	1.81	15.1	0.62
	3/21/2006	18.36	7.19	1.104	4.42	155	0.27
02NEW11	3/18/2004	21.97	7.62	1.023	3.66	174	11.9
	9/20/2004	20.33	6.77	1.155	3.59	133	0.9
	3/29/2005	19.73	7.35	1.201	3.98	120	32
	9/20/2005	20.57	7.18	1.295	1.99	29.8	2.75
	3/21/2006	18.71	7.26	1.141	3.06	143	0
02NEW15	3/18/2004	20.38	7.49	1.424	2.67	201	86
	9/22/2004	22.24	6.68	1.428	3.59	5	47
	3/29/2005	19.46	7.32	1.436	1.88	147	20
	9/21/2005	20.97	7.26	1.13	2.72	49.2	4.6
	3/22/2006	18.52	7.15	1.255	5.61	158	1.97
02NEW16	3/18/2004	19.41	7.56	0.927	7.88	1.69	7.4
	3/29/2005	19.09	7.43	0.836	4.21	185	5.2
	9/21/2005	20.25	7.08	1.3	4.04	23.2	0.1
	3/22/2006	19.61	7.24	1.097	5.05	125	4.13
02NEW2	3/19/2004	20.6	7.63	1.028	4.01	245	3.3
	9/21/2004	22.68	6.68	1.184	3.98	269	1.98
	3/29/2005	20.33	7.34	0.944	5.56	155	5
	9/21/2005	20.99	7.12	1.19	1.18	23.9	0.31
	3/22/2006	20.46	7.29	1.102	3.73	124	0.04
02NEW7	4/1/2004	21	7.84	1.12	6.29	119	4.7
	10/1/2004	23.17	7.13	1.38	4.62	102	2.5
	3/17/2005	20.6	7.04	82.8	7.16	84	0
	9/26/2005	21.99	7.1	1.03	3.22	52.8	2.4
	3/16/2006	21.07	7.13	1.2	9.31	90	0.54
02NEW8A	3/18/2004	21.88	7.5	1.158	3.2	191	9.9
	9/20/2004	23.74	6.66	1.183	3.82	215	0.79
	3/16/2005	22.68	7.26	1.202	5.36	173	0.35
	9/20/2005	22.16	6.86	0.089	1.63	38.6	1.48
	3/16/2006	22.58	7.1	0.863	4.27	81	1.3
SITE 3							
03_DGMW64A	3/24/2004	25.31	7.3	6.58	8.99	35	35
	9/30/2004	24.3	7.44	1.45	6.94	72	27.2
	3/17/2005	25.2	7.31	0.144	10.13	42	15.2
	9/7/2005	24.44	7.32	1.23	8.14	39.5	14.2
	3/15/2006	24.91	7.37	1.19	14.22	94	24.7
03_DGMW65XA	3/23/2004	26.25	7.46	6.36	4.22	27	14
	9/29/2004	25.1	7.63	1.39	7.88	64	3.21
	3/17/2005	24.3	7.31	0.14	5	68	24.1
	9/7/2005	25.6	7.46	1.11	3.9	10.2	13.7
	3/15/2006	25.29	7.29	1.2	5.04	41	5.95

Table 4 (continued) Historical Summary of Groundwater Sampling Parameters Former MCAS El Toro, California

Well ID	Date	Temp (°C)	рН	Specific Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	ORP (mV)	Turbidity (NTU
04_DBMW40	3/25/2004	23.64	7.67	1.4	1.49	-1	38
	9/20/2004	24.55	6.89	1.421	1.8	187	37.9
	3/21/2005	23.54	7.39	1.4	2.57	167	23
	9/20/2005	23.51	7.06	1.39	0.98	34.2	19.9
	3/17/2006	21.63	7.27	1.375	2.17	5	8.1
04_DGMW66A	3/23/2004	25.35	7.13	7.84	0	-28	6.1
	9/29/2004	24.7	7.32	1.72	7.56	18	29
	3/16/2005	25.7	6.91	0.172	0.14	10	1.19
	9/7/2005	26.4	6.98	1.49	0.38	40.2	10.53
	3/16/2006	26.04	7.03	1.3	0	23	1.62
04_UGMW63	3/25/2004	23.47	7.51	1.6	0.57	-12	0
	9/20/2004	23.82	6.7	1.57	1.04	275	0.75
	3/21/2005	23.37	7.17	1.52	2.38	133	3.1
	9/19/2005	25.83	7.13	1.46	2.44	17.3	29.3
	3/16/2006	22.75	7.09	1.407	2.45	41	70
SITE 5	, ,						
05_DBMW41A	3/24/2004	23.62	7.22	5.67	4.54	67	3.4
	9/30/2004	22.3	7.43	1.22	8.13	70	20.4
	3/23/2005	22.1	7.16	0.124	6.74	72	30
	9/8/2005	22.77	7.11	1.039	5.14	56	6.23
	3/15/2006	22.36	7.14	1.02	6.98	126	0.8
05 DGMW67A	3/24/2004	23.01	7.25	5.83	4.8	40	110
00_20	9/30/2004	23	7.41	1.27	8.18	61	60.6
	3/31/2005	22.1	7.16	0.137	6.45	70	34
	9/20/2005	22.53	7.1	1.18	3.12	29.8	1.75
	3/17/2006	19.83	7.24	1.085	5.37	31	0
05 DGMW68A	3/24/2004	22.92	7.19	5.69	4.81	80	16
	9/30/2004	22.6	7.4	1.21	7.91	92	19.1
	3/18/2005	22.9	7.07	0.129	6.15	115	2
	9/8/2005	23.42	7.14	1.029	5.06	63.4	4.37
	3/16/2006	23.14	7.2	0.893	7.49	140	3.31
05NEW1	3/24/2004	23.02	7.42	1.26	5.69	-56	19
	9/16/2004	23.57	6.53	1.259	7.72	239	35.8
	3/21/2005	22.31	7.3	1.236	7.55	190	30
	9/23/2005	21.93	6.79	1.18	1.4	67	17
	3/17/2006	19.82	7.05	1.141	8.5	13	5.8
SITE 17							
17_DGMW82	3/19/2004	22.69	7.64	1.134	2.94	201	42.6
_	9/21/2004	23.52	6.97	1.41	1.69	340	73.2
	3/16/2005	22.48	7.29	1,141	2.98	176	12
	9/22/2005	22.68	7.26	1.04	2.38	25	9.9
	3/22/2006	22.65	7.27	0.952	2.24	104	3.55
17NEW1	3/19/2004	23.46	7.56	1.133	3.44	193	110
	9/21/2004	23.83	7.01	0.981	3.07	340	273
	3/16/2005	22.58	7.39	0.967	3.95	174	120
	9/22/2005	24.15	7.29	0.85	2.83	40.4	40
	3/20/2006	20.74	7.2	1.126	4.53	195	51.8

Notes:

The dissolved oxygen measurements greater than about 9 mg/L (approximate saturation concentration) are probably not valid and may indicate a sensor malfunction.

Acronyms:

°C - degrees centigrade

NM - not measured due to equipment failure

μS/cm - microsiemens per centimeter

mg/L - milligrams per liter mV - millivolts NTU - nephelometric turbidity units ORP - oxidation-reduction potential

Table 5

Detected Volatile Organic Compounds in Groundwater
Former MCAS El Toro, California

						P	rimary VC	OCs Detecte Concentr	d and Reg		andards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds De	etected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 1	01-DGMW57	83	27-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Site 1	01-DGMW58	77	6-Aug-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Methyl Disulfide	11 JN
Site 1	01MW101	77	6-Aug-99	1 U	1 U	1 U	1 U	1 U	1 U	1 Ü		
Site 1	01MW102	135	28-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 Ü		
Site 1	01_MW201	57	28-Jul-99	1 U	1 ប	1 U	1 ប	1 U	1 U	1 U		
			25-Sep-01	1 U	1 U	1 U	1 U	1 U	1 U	1 U		<u> </u>
ļ			14-Mar-02	1 U	1 U	0.5 U	1 ប	1 U	1 U	1 U		
			23-Sep-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
	·		19-Mar-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	1,2-Dichloroethane	0.4 J
ļ		_	22-Sep-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			18-Mar-04	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			23-Sep-04	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
ļ			16-Mar-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U	Acetone	2 J
			20-Sep-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
ļ	 		16-Mar-06	1 U	1 U	0.5 ป	1 U	2 U	10	10		
Site 2	02_DGMW59	89	15-Dec-92	0.6 J	1 U	1 U	1 Ü	1 U	1 U	1 U		
<u> </u>	 		23-Jun-93	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			6-Feb-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			6-Feb-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			4-Nov-96	0.7 J	1 U	1 U	1 Ü	1 U	1 U	1 U		
			26-Mar-97	1 U	1 U	1 U	1 U	1 U	1 J	1 U	Bromodichloromethane	0.6 J
			26-Mar-97								Chlorodibromomethane	0.7 J
			26-Mar-97								Methylene Chloride	2
			3-Jul-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			28-Oct-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Methylene Chloride	0.4 J
			7-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U	<u></u>	

CDM

						P	rimary VC	OCs Detecte Concenti	d and Reg		tandards	
Site	Station ID	Base Screen Depth	Sample Date	тсе	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds De	tected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 2	02_DGMW59 (cont.)		27-Jan-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
<u></u>			3-May-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			21-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			20-Jun-00	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			25-Sep-01	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1,4-Dichlorobenzene	0.4 J
			25-Sep-01								Dichlorodifluoromethane	0.3 J
			14-Mar-02	1 U	1 U	0.5 UJ	1 U	1 U	1 U	1 U		
			23-Sep-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			24-Sep-03	1 ປ	1 U	0.5 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	0.4]
			19-Mar-04	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
<u> </u>			21-Sep-04	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
<u></u>			29-Mar-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U	Acetone	1 J
			21-Sep-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
			21-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
Site 2	02_DGMW60	100	18-Nov-92	82	8	1 U	1 U	8	6	1 U	1,2-Dichloroethane	0.9]
			23-Jun-93	61	6	1 U	1 U	5	5	1 U	1,1,2-Trichloroethane	2
			23-Jun-93								1,2-Dichloroethane	0.6 J
			15-Aug-95	91	4.6 J	0.5 U	0.5 U	8 J	5.6 J	1 U	1,2-Dichloroethane	0.8 J
			15-Aug-95								1,1,2 Trichloroethane	1.7]
			28-Nov-95	81	4 J	6 U	2 U	1 U	5.1	1 U		1
			6-Feb-96	98	4	1 U	1 U	1	6	1 U	1,1,2-Trichloroethane	2
			6-Feb-96	98	3	1 U	1 U	0.8 J	5	1 U	1,1,2-Trichloroethane	2.
			4-Nov-96	203	7	1 U	1 U	20	17	1 U	1,1,2-Trichloroethane	6
			4-Nov-96								1,2-Dichloroethane	2
			26-Mar-97	150	5 J	10 U	10 U	10	10	10 U	1,1,2-Trichloroethane	5 J
			26-Mar-97							Ī	Chlorodibromomethane	5 J
			1-Jul-97	160	5	1 U	1 U	. 18	18	1 U	1,1,2-Trichloroethane	6
			1-Jul-97								1,2-Dichloroethane	2
_			1-Jul-97								Bromomethane	0.7 J
			28-Oct-97	190	6	1 U	1 U	21	20	1 U	1,1,2-Trichloroethane	7

CDM

Former MCAS El Toro GW Monitoring - Round 23

2 of 19

Final September 2006

						P	rimary VC	Consent			andards	
Site	Station ID	Base Screen Depth	Sample Date	тсе	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds	Detected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 2	02_DGMW60 (cont.)	T	28-Oct-97						[1,2-Dichloroethane	2
		,	28-Oct-97	190	6			22	21	1 U	1,1,2-Trichloroethane	7
	,		28-Oct-97			1 U	1 U				1,2-Dichloroethane	2
			28-Oct-97								1,2-Dichloropropane	0.3 J
			12-Oct-98	130	4.2			16.3	16	1 U	1,1,2-Trichloroethane	6.2
			12-Oct-98								1,2-Dichloroethane	1.3 J
			25-Jan-99	130	4.6	1 Ü	1 U	16.2	18	1 U	1,1,2-Trichloroethane	5.9
			25-Jan-99								1,2-Dichloroethane	1.8
			3-May-99	130	4.4	1 U	10	15	16	1 U	1,1,2-Trichloroethane	5
			3-May-99								1,2-Dichloroethane	1.5
			3-May-99								1,2-Dichloropropane	0.2 J
			19-Jul-99	140	4.7	1 U	1 U	16.2	18	1 U	1,1,2-Trichloroethane	5.9
			19-Jul-99								1,2-Dichloroethane	2.1
			21-Jun-00	100	3	1 U	1 U	10	11	1 U	1,1,2-Trichloroethane	4
			21-Jun-00								1,2-Dichloroethane	1
			25-Sep-01	110	3	0.5 U	ט 1	12	14	1 U	1,1,2-Trichloroethane	5
			25-Sep-01								1,2-Dichloroethane	2
			14-Mar-02	92	5	0.5 U	1 Ü	13	15	1 U	Bromodichloromethane	0.9 J
			14-Mar-02		· · · · · · · · · · · · · · · · · · ·		1				1,2-Dichloroethane	2
			14-Mar-02						-		1,1,2-Trichloroethane	5
			23-Sep-02	120	4	0.5 U	1 U	15	16	1 U	1,1,2-Trichloroethane	5
			23-Sep-02								1,2-Dichloroethane	2
					-							
Site 2	02_DGMW61	100	14-Dec-92	1	2	1 U	1 U	1 U	1 U	1 U		
			22-Jun-93	2	4	1 U	1 U	1 U	1 U	1 U		
			16-Aug-95	1 U	13	1 U	1 Ü	1 U	1 U	1 U		
			29-Nov-95	1 U	19	1 U	1 U	1 U	1 U	1 U		
			8-Feb-96	1 U	14	1 U	1 U	. 1 U	1 U	1 U		
			4-Nov-96	1 U	20	1 U	1 U	1 U	1 U	1 U	,	
			26-Mar-97	0.8 J	12	1 U	1 U	1 U	1 U	1 U		
			2-Jul-97	1 U	10	1 U	1 U	1 U	1 U	1 U		

Station ID 12_DGMW61 (cont.)	Base Screen Depth (ft. bgs)	28-Oct-97 8-Oct-98 25-Jan-99 27-Apr-99 19-Jul-99 21-Jun-00	TCE 5 0.9 J 1 U 0.5 J 0.5 J 1 U	PCE 5 11 5.2 6.2 6	0.5 1 U 1 U	1,1-DCE 6 1 U	1,2-DCE (Total) 6	Chloro- form 100	Benzene 1 1 U	Other Compounds	Detected Result
)2_DGMW61 (cont.)	(ft. bgs)	8-Oct-98 25-Jan-99 27-Apr-99 19-Jul-99	0.9 J 1 U 0.5 J 0.5 J 1 U	11 5.2 6.2	1 U 1 U	1 U	1 U				Result
02_DGMW61 (cont.)		8-Oct-98 25-Jan-99 27-Apr-99 19-Jul-99	1 U 0.5 J 0.5 J 1 U	5.2 6.2	1 U			1 U	1 U		
		25-Jan-99 27-Apr-99 19-Jul-99	0.5 J 0.5 J 1 U	6.2		1 U					
		27-Apr-99 19-Jul-99	0.5 J 1 U		1 []		1 U	1 U	1 U		
		19-Jul-99	1 U	6		1 U	- 1 U	1 U	1 U		
					1 U	1 U	1 U	1 U	1 Ü		
		21-Jun-00		6	1 U	1 U	1 U	1 U	1 U		
			1 U	3	1 U	1 U	1 U	1 U	1 U		
		25-Sep-01	1 U	3	1 U	1 U	1 U	1 U	1 U		
		14-Mar-02	1 U	2	0.5 U	1 U	1 U	1 U	1 U		
		23-Sep-02	1 U	4	0.5 U	1 U	1 U	1 U	1 U		
- <u> </u>											
)2NEW2	95										
	-										
										Methylene Chloride	0.4 J
	-										
						·					
			· · · · · · · · · · · · · · · · · · ·								
	-	•									
										<u> </u>	
								·		Bromodichloromethane	0.6 J
	 										
	-							<u> </u>			
	-							·		A	
								·		Acetone	1 J
······································	 	22-War-00	10	10	0.5 0	10	20	10	10		
122	NEW2	NEW2 95	23-Sep-02	23-Sep-02 1 U NEW2 95 21-Dec-95 1 U 26-Nov-96 1 26-Mar-97 1 U 3-Jul-97 1 U 27-Oct-97 1 U 8-Oct-98 1 U 27-Jan-99 1 U 4-May-99 1 U 20-Jul-99 1 U 20-Jul-99 1 U 25-Sep-01 1 U 14-Mar-02 1 U 23-Sep-02 1 U 29-Sep-03 1 U 19-Mar-04 1 U 29-Mar-05 1 U 21-Sep-05 1 U	NEW2 95 21-Dec-95 1 U 1 U 26-Nov-96 1 1 U 1 U 26-Nov-96 1 1 U 1 U 27-Oct-97 1 U 1 U 1 U 27-Jan-99 1 U 1 U 1 U 20-Jul-99 1 U 1 U 1 U 25-Sep-01 1 U 1 U 1 U 29-Mar-04 1 U 1 U 1 U 29-Mar-05 1 U 1 U 1 U 29-Mar-05 1 U 1 U 1 U 29-Mar-05 1 U 1 U 1 U 20-Jul-99 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	NEW2 95 21-Dec-95 1 U 1 U 1 U 1 U 1 U 26-Nov-96 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	NEW2 95 21-Dec-95 1U 1U 1U 1U 1U 1U 26-Nov-96 1 1U 1	23-Sep-02	NEW2 95 21-Dec-95 1U	23-Sep-02 1U 4 0.5 U 1U 1	NEW2 95 21-Dec-95 1U

						P	rimary VC	OCs Detecte Concentr			andards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds D	etected
_		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 2	02NEW7	143	21-Dec-95	1 U	0.3 J	1 U	1 U	1 U	1 U	1 U		
			8-Jan-97	2	1 U	1 U	1 U	1 U	1 U	1 U		
			20-Mar-97	1 U	1 U	1 Ü	1 U	1 U	1 U	1 U		
			11-Jul-97	8	1 U	1 U	1 U	1 U	1 U	1 U	1,2-dichloropropane	3
-			22-Oct-97	1 U	1 U	1 U	1 Ü	1 U	0.3 J	1 U	1,2-dichloropropane	0.5 J
			1-Apr-04	2	1 U	0.5 U	1 U	1 U	1 U	1 U		
			1-Oct-04	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
			17-Mar-05	1	1 U	0.5 U	1 U	2 U	0.3 J	1 U		
			26-Sep-05	1	2	0.5 U	1 บ	2 U	ט 1	1 U	Chlorobenzene	0.3 J
			26-Sep-05								Freon-113	0.8 J
			16-Mar-06	32	0.9 J	0.5 U	1 U	2 U	1 U	1 U	Chlorobenzene	0.4 J
			16-Mar-06								Toluene	0.4 J
Site 2	02NEW8A	104	27-Dec-95	1 U	16	1 U	1 U	1 U	1 U	1 U		
			7-Nov-96	1 U	19	1 U	1 U	1 U	1 U	1 U		
			25-Mar-97	1 U	11	1 U	1 Ü	1 U	1 U	1 U		
			2-Jul-97	1 บ	12	1 U	1 U	1 U	1 U	1 U]	
			27-Oct-97	0.6 J	12	1 U	1 Ü	1 U	1 U	1 U		
	-		14-Oct-98	1 U	14	1 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	0.6 J
			14-Oct-98	1 U	13	1 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	0.6 J
			28-Jan-99	1 U	13	1 U	1 U	1 U	1 U	1 U		
			27-Apr-99	1 U	9.3	1 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	0.4 J
			20-Jul-99	1 U	14	1 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	1.1
			21-Jun-00	1 U	7	1 U	1 Ü	1 U	1 U	1 U		
			25-Sep-01	0.5 J	5	1 U	1 U	1 U	0.8]	1 U		
			7-Mar-02	1	3	0.5 U	1 U	1 U	1	1 U		
			23-Sep-02	2	3	0.5 U	1 U	1 U	2	1 U		
			23-Sep-03	0.4 J	3	0.5 U	1 U	1 U	1 U	1 Ü		
			18-Mar-04	1 U	3	0.5 U	1 U	1 U	1 U	1 U	Methyl-tertiary-butyl-ether	0.3 J
			20-Sep-04	0.3 J	2	0.5 U	1 U	2 U	1 U	10		
			16-Mar-05	1 U	8	0.5 U	1 U	2 U	0.3 J	1 U	Acetone	3 J

,						P	rimary VC	Cs Detecte Concentr	d and Reg		tandards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds D	etected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 2	02NEW8A (cont.)		20-Sep-05	1 U	6	0.5 U	1 U	2 U	1 U	1 U		
			16-Mar-06	1 U	8	0.5 U	1 U	2 U	1 U	1 U		
Site 2	02NEW11	65	21-Dec-95	1 U	2	1 U	1 U	1 U	1 U	1 U		
	† · · · ·		12-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			25-Mar-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			8-Jul-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			23-Oct-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			14-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			21-Jan-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			26-Apr-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			15-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			22-Jun-00	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			25-Sep-01	1 U	1 U	1 U	1 U	1 U	4	1 U	Bromodichloromethane	5]
			25-Sep-01								Bromoform	0.7 J
			25-Sep-01								Chlorodibromomethane	4 J
			14-Mar-02	1 U	1 U	0.5 UJ	1 U	1 U	3	1 U	Bromodichloromethane	4
			14-Mar-02								Chlorodibromomethane	3
			23-Sep-02	1 U	1 U	0.5 U	1 U	1 U	2	1 U	Acetone	1 J
			23-Sep-02								Bromodichloromethane	2
			23-Sep-02								Chlorodibromomethane	1
			22-Sep-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			18-Mar-04	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			20-Sep-04	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
			29-Mar-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
	ļ		20-Sep-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
			21-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
Site 2	02NEW15	65	10.0 + 00			4 **	ļ <u></u>	4				
site 4	021454412	65	12-Oct-98 1-Feb-99	1 U	1 U	1 U	1 U	1 U	1 U	10		-1
			 	1 U	1 U	1 U	1 U	1 U	1 U	1 U		-
	.l		26-Apr-99	1 U	1 U	1 U	1 U	0.4	1 U	1 U	1,2 Dichlorobenzene	3.5

CDM

Former MCAS El Toro GW Monitoring - Round 23

6 of 19

Final September 2006

						P	rimary VC	Cs Detecte Concentr	d and Reg		andards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds I	Detected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 2	02NEW15 (cont.)		26-Apr-99			1 U	1 U				Chlorobenzene	0.6
			26-Apr-99			1 U	1 U				Dichlorodifluoromethane	0.5
			19-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			22-Jun-00	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			25-Sep-01	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			14-Mar-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			23-Sep-02	1 U	1 U	0.5 U	1 Ü	1 U	1 U	1 U		
			22-Sep-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
· .			18-Mar-04	1 U	1 U	0.5 ั	1 ប	1 บ	1 U	1 บ		
			23-Sep-04	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
			29-Mar-05	1 U	1 U	0.5 U	1 Ü	2 U	1 U	, 1 U		
			21-Sep-05	1 U	1 U	0.5 ป	1 U	2 U	1 U	1 U		
			22-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U	Chlorobenzene	0.5 J
			22-Mar-06								1,4-dichlorobenzene	0.7 J
			22-Mar-06								1,2-dichlorobenzene	0.7 J
Site 2	02NEW16	65	8-Oct-98	1 U	1 บ	1 ប	1 U	1 U	1 U	1 U		
			26-Jan-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			4-May-99	1 U	0.3 J	1 U	1 U	1 U	1 U	1 U		
			21-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			25-Sep-01	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			14-Mar-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			23-Sep-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			22-Sep-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Bromethane	1
			22-Sep-03								Toluene	0.4 J
			22-Sep-03								Xylenes (Total)	0.3 J
			18-Mar-04	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			29-Mar-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U	Acetone	1 J
			21-Sep-05	1 U	1 U	0.5 U	1 U	2 U	ז ט	1 U		
			22-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		

						P	rimary VC	Cs Detecte Concentr	d and Regations in	gulatory S μg/L	tandards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds D	etected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 2	02_UGMW25	75	12-Sep-92	0.9 J	1 U	1 U	1 U	1 U	1 U	1 U		
			22-Jun-93	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			7-Feb-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			17-Aug-95	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
		_	28-Nov-95	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			12-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
L			26-Mar-97	1 U	1 U	1 U	1 Ü	1 U	1 U	1 U		
			8-Jul-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			23-Oct-97	1 U	1 U	1 U	1 U	1 U	1 U	1 ប		
			7-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Toluene	0.8 J
			1-Feb-99	1 U	1 Ü	1 U	1 U	1 U	1 U	1 U		
			26-Apr-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			15-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Site 3	03_DGMW64	285	15-Jan-93	1 U	1 Ü	1 U	1 U	1 U	1 U	1 U		
			6-Feb-93	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			26-Feb-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			12-Nov-96	1 U	1 U	1 U	1 U	1 U	1	1 U		
			12-Nov-96	1 U	1 U	1 U	.1 U	1 U	1	1 U		
			4-Mar-97	1 U	1 U	1 U	1 U	1 U	0.8 J	1 U	Methylene Chloride	3
			30-Jun-97	1 U	1 U	1 U	1 U	1 U	0.9 J	1 U		
			16-Oct-97	1 U	1 U	1 U	1 U	1 U	0.8 J	1 U		
			13-Oct-98	1 U	1 U	1 U	1 U	1 U	0.7 J	1 U		
	-		2-Feb-99	1 U	1 U	1 U	1 U	1 U	0.8 J	1 U		
<u> </u>			6-May-99	1 U	1 U	1 U	1 U	1 U	0.9 J	1 U		
<u> </u>	·		26-Jul-99	1 U	. 1 U	1 U	1 U	1 U	1.3	1 U		
Site 3	03_DGMW64A	250	15-Feb-01	10.177	10.777	10.777	10.17	10.77	207	10.7**	D 1:11	1
Jame 5	O_DGMITOIA		15-Feb-01 17-Sep-01	10 UJ	10 UJ 1 U	10 UJ	10 UJ	10 UJ	0.8 J	10 UJ	Bromodichloromethane	0.4 J
	·		8-Mar-02	1 U		1 U	1 UJ	1 UJ	1	1 U	Bromodichloromethane	0.6 J
		- 		1 U	1 U	0.5 U	1 U	1 U	1	1 U	Bromodichloromethane	0.7 J
L	<u> </u>		25-Sep-02	1 U	1 U	0.5 U	1 ปั	1 U	1	1 U	Bromodichloromethane	0.8 J

CDM

8 of 19

Final September 2006

					······································	P	rimary VC	Cs Detecte	d and Reg	gulatory S	tandards	
ļ			,					Concent	ations in	μg/L		=
Site	Station ID	Base Screen Depth	Sample Date	тсе	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds De	etected
	·	(ft. bgs)		5	5	0.5	6	6	100	1	<u> </u>	Result
Site 3	03_DGMW64A (cont.)		17-Mar-03	1 U	1 U	0.5 U	1 U	1 U	1	1 U		
			22-Sep-03	1 U	1 U	0.5 U	1 U	1 U	1	1 U	Bromodichloromethane	0.6]
			24-Mar-04	1 U	1 U	0.5 U	1 U	1 Ü	1	1 U	Bromodichloromethane	0.3 J
			30-Sep-04	ט 1	1 U	0.5 U	1 U	2 U	1	1 U	Bromodichloromethane	0.3 J
			17-Mar-05	1 U	1 U	0.5 U	1 Ü	2 U	1	1 U	Acetone	2 J
			17-Mar-05								Bromodichloromethane	0.4 J
			7-Sep-05	1 U	1 U	0.5 U	1 U	2 U	0.9 J	1 U		
			15-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1	1 U		
Site 3	03_DGMW65X	270	18-Jan-93	1 U	1 U	1 U	1 U	1 U	1	1 U		
			7-Jul-93	1 U	1 U	1 U	1 Ü	1 U	1	1 U		
			26-Feb-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			11-Nov-96	1 U	1 Ü	1 U	1 U	1 U	1 U	1 U		
			4-Mar-97	1 U	1 U	1 U	1 U	1 U	1 U	1 Ü	Methylene Chloride	1
			30-Jun-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		·
			15-Oct-97	1 U	1 U	1 U	1 U	1 U	0.5 J	1 U		
			13-Oct-98	ט 1	1 U	1 ប	1 U	1 U	0.8 J	1 U		
			29-Jan-99	1 U	1 U	1 Ü	1 U	1 U	0.9 J	1 Ü		
			7-May-99	1 U	1 U	1 U	1 U	1 U	0.7 J	1 U		
			26-Jul-99	1 U	1 U	1 U	1 U	1 U	0.9 J	1 U		
		1	19-Jun-00	1 U	1 U	1 U	1 U	· 1 U	1 U	1 U		1
Site 3	03_DGMW65XA	235	15-Feb-01	10 U	10 U	10 U	10 U	10 U	10 U	10 U	Freon-113	4 J
			17-Sep-01	1 U	1 U	1 U	0.3 J	1 UJ	1 U	1 U	Freon-113	12
			8-Mar-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Freon-113	7
			1-Oct-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Freon-113	8
			17-Mar-03	1 U	1 U	0.5 U	1 Ü	1 U	1 U	1 U	Freon-113	3
			17-Mar-03								Acetone	0.5 J
			22-Sep-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Freon-113	17
			23-Mar-04	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Freon-113	5
			29-Sep-04	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U	Freon-113	5

						P	rimary VC	Cs Detecte Concentr	d and Reg		andards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CCI4	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds D	etected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 3	03_DGMW65XA (cont.)		17-Mar-05	1 U	1 U	0.5 ປ	1 U	2 U	0.3 J	1 U	Freon-113	15
			7-Sep-05	1 U	1 U	0.5 U	1 U	2 U	0.3 J	1 U	Freon-113	15
			15-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U	Freon-113	12
Site 3	03 UGMW26	270	10-Jan-92	1 U	1 U	1 U	1 U	1 U	1 U	1 Ü		
			23-Jun-93	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			27-Feb-96	0.3 J	0.6 J	1 U	1 U	1 U	1 U	1 U		
			14-Nov-96	1	2	1 U	1 U	1 U	1 U	1 U		
			14-Nov-96	1	2	1 U	1 U	1 U	1 U	1 U		
			6-Mar-97	1 J	2	1 U	1 U	1 U	1 U	1 U	Methylene Chloride	1
			1-Jul-97	0.8 J	1	1 U	1 U	1 U	1 U	1 U		
			17-Oct-97	0.9 J	2	1 U	1 U	1 U	1 U	1 U	Methylene Chloride	0.6 J
			13-Oct-98	0.9 J	1.1	1 U	1 U	1 U	1 U	1 U		
			3-Feb-99	1 J	1.3	1 U	1 U	1 U	1 U	1 U		
			5-May-99	1	1.4	1 U	1 U	1 U	1 U	1 U		
			22-Jul-99	1.2	1.4	1 U	1 U	1 U	1 U	1 U		
			19-Jun-00	0.8 J	1	1 U	1 U	1 U	1 U	1 U	·	
			20-Sep-01	1	1	1 U	1 U	1 U	1 U	1 U		
Site 3	03_UGMW26A	235	28-Feb-01	0.3 J	0.6 J	10 U	10 U	10 U	0.5 J	10 U		_
	05_002011	1	20-Sep-01	1 U	1 U	1 U	1 U	1 U	0.5]	1 U		-
			19-Mar-02	1 U	0.3 J	0.5 U	1 U	1 U	0.4 J	1 0		
		-	2-Oct-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			21-Mar-03	1 U	1 U	0.5 U	1 U	1 U	0.3 J	1 U		
Site 3	04_DBMW40	260	12-Mar-92	1 U	1 U	1 77	177	1 77	1	4	0.11	
JILE J	01_DDM17440	200	24-Jun-93	1 U	1 U	1 U	1 U	1 U	1 U		2-Hexanone	7
	-		12-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	4		
			5-Mar-97	1 U	1 U	1 U	10	1 U	1 U	40 1 U	Mathylana Chlorida	1
		- 	30-Jun-97	1 U	1 U	1 U	1 U	1 U	10	14	Methylene Chloride	1

CDM

Former MCAS El Toro GW Monitoring - Round 23

10 of 19

Final September 2006

						ř	rimary VC	Cs Detecte Concenti	d and Regrations in		tandards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds Do	etected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 3	04_DBMW40 (cont.)		16-Oct-97	1 U	1 Ü	1 U	1 U	1 U	1 U	2		
			15-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Toluene	0.8 J
			4-Feb-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			5-May-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			26-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			19-Jun-00	1 U	1 U	1 U	1 U	1 U	1 U	1 U	4-Methyl-2-Pentanone	2 J
			20-Sep-01	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			15-Mar-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			18-Sep-02	1 U	1 U	0.5 U	1 Ü	1 Ü	1 U	0.7 J		
·			13-Mar-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
	<u> </u>		23-Sep-03	1 U	1 U	0.5 บ	1 U	1 บ	1 U	1 U		
			25-Mar-04	1 U	1 U	0.5 U	1 บ	1 U	1 U	1 U		
			20-Sep-04	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
			21-Mar-05	1 U	1 U	0.5 U	1 U	2 U	_ 1 U	1 U		
			20-Sep-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
<u> </u>		-	17-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1 U	_1U		
Site 3	04_DGMW66	290	14-Jan-93	1 U	1 U	1 U	1 Ü	1 U	1 U	1 U		
			24-Jun-93	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			26-Feb-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		-
			12-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	0.7 J		
			4-Mar-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U	*	
			1-Jul-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			15-Oct-97	1 U	1 U	1 U	1 U	1 U	1 U	1 Ü		
			16-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Toluene	0.8 J
			4-Feb-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1
			11-May-99	1 U	1 U	1 U	1 U	1 U	0.4]	1 U	Silane	1.1 JN
			23-Jul-99	1 U	1 U	1 U	1 U	1 U	0.5 J	. 1 U		1
			20-Sep-01	1 U	1 U	1 U	1 UJ	1 UJ	1 U	1 U		

						P	rimary VC	Cs Detecte Concentr	d and Reg		andards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CCl4	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds D	etected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 3	04_DGMW66A	230	20-Sep-01	1 U	1 U	1 U	1 U	1 U	1 U	150	Cyclohexane	0.9 J
			20-Sep-01								Isopropylbenzene	0.6 J
			20-Sep-01								Xylenes	3
			11-Mar-02	1 U	1 U	0.5 U	1 U	1 U	1 U	76 J	Bromomethane	0.8 J
			11-Mar-02								Xylenes	2 J
			30-Sep-02	1 U	1 U	0.5 U	1 U	1 U	1 U	65	Xylenes	1
			17-Mar-03	1 U	1 U	0.5 U	1 U	1 U	1 U	. 90	Xylenes	1
			25-Sep-03	1 U	1 U	0.5 ป	1 U	1 U	1 U	5	Bromomethane	2
			23-Mar-04	1 U	1 U	0.5 U	1 U	1 U	1 U	3		
			29-Sep-04	1 U	1 U	0.5 U	1 U	2 U	1 U	5		
			16-Mar-05	1 U	1 U	0.5 U	1 U	2 U	1 U	3		
		1.	7-Sep-05	1 U	1 Ü	0.5 U	- 1 U	2 U	1 U	1		
			16-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1 U	1		
											L	
Site 3	04_UGMW63	275	24-Nov-92	1 U	1 U	1 U	1 U	1 U	1 U	3	Methylene Chloride	2
		1	25-Jun-93	1 U	1 U	1 Ü	1 U	1 U	1 U	4	Methylene Chloride	0.6 J
			30-Jan-96	1 U	1 U	1 U	1 U	1 U	1 U	3		
			14-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	7		
		1	14-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	7		
			15-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Toluene	0.8 J
			4-Feb-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			5-May-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Butane	1.5 JN
			26-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	0.9 J	Unknown C8H18	5.3 J
			26-Jul-99		·						Unknown Substituted Alkane	2.1 J
			26-Jul-99								Unknown Substituted Alkane	2.5 J
			26-Jul-99								Unknown Substituted Alkane	3.4 J
			19-Jun-00	1 U	1 U	1 U	1 U	1 U	1 U	0.9 J		
			20-Sep-01	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			15-Mar-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			18-Sep-02	1 U	1 U	0.5 U	1 U	1 U	1 U	0.3 J		
			13-Mar-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		

CDM

Former MCAS El Toro GW Monitoring - Round 23

12 of 19

Final September 2006

						P	rimary VO	Cs Detecte Concentr	d and Reg ations in		tandards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds De	tected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 3	04_UGMW63 (cont.)		23-Sep-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			25-Mar-04	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			20-Sep-04	1 U	1 U	0.5 U	1 บ	2 U	1 U	1 U	Methylene Chloride	5 J
			21-Mar-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
			19-Sep-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
			16-Mar-06	1 U	1 U	0.5 บ	1 Ü	2 U	1 U	1 U		
Site 5	05 DBMW41	222	16-Nov-92	1 U	0.8 J	1 U	1 U	1 U	1 Ü	1 U		
			20-Oct-93	1 U	0.7 J	1 U	1 U	1 U	1 U	1 U		
			5-Dec-95	1 U	0.8 J	1 U	1 U	1 U	1 U	1 U		-
			5-Dec-95	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
	1		7-Feb-96	1 U	1 U	1 U	1 U	1 U	1 U	1 Ü		
			13-Nov-96	1 U	0.8 J	1 U	1 U	1 U	1 U	. 1 U	Methylene Chloride	2
			13-Mar-97	1 U	0.6 J	1 U	1 U	1 U	1 U	1 U		
			8-Jul-97	- 1 U	0.6 J	1 U	1 U	1 U	1 U	1 U		
			21-Oct-97	1 U	0.5 J	1 U	1 U	1 U	1 U	1 U		-
			16-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			3-Feb-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		<u> </u>
			10-May-99	1 U	0.2 J	1 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	0.3]
			22-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	0.6 J
			19-Jun-00	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
										ļ		
Site 5	05_DBMW41A	185	16-Feb-01	10 U	10 U	10 U	10 U	10 U	10 U	10 U		<u> </u>
			19-Sep-01	1 U	1 U	1 U	1 U	1 U	1 U	1 U		<u> </u>
		_	12-Mar-02	1 U	1 U	0.5 U	1 U	1 U	0.6 J	1 U		_
			30-Sep-02	1 U	1 U	0.5 U	1 U	1 U	0.7 J	1 U		
	<u> </u>	<u> </u>	19-Mar-03	1 U	10	0.5 U	1 U	1 U	0.8 J	1 U	Bromodichloromethane	0.4 J
 			18-Sep-03	1 U	1 U	0.5 U	10	1 U	1	1 U	Bromodichloromethane	0.8 J
			24-Mar-04	1 U	1 U	0.5 U	1 U	1 U	1	1 U	Bromodichloromethane	0.5 J
I	.]		30-Sep-04	1 U	1 U	0.5 U	1 U	2 U	3	1 U	Bromodichloromethane	1

						P	rimary VC	Cs Detecte Concent	d and Reg ations in		tandards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds D	etected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 5	05_DBMW41A (cont.)		23-Mar-05	1 U	1 U	0.5 ป	1 U	2 U	3	1 U	Bromodichloromethane	1
	1	i	8-Sep-05	1 Ü	1 U	0.5 U	1 U	2 U	3	1 U		
			15-Mar-06	1 U	1 U	0.5 U	1 U	2 U	3	1 U	bromodichloromethane	0.5 J
<u> </u>												
Site 5	05_DGMW67	227	30-Nov-92	1 U	1 U	1 U	1 U	1 U	1 U	0.3 J		
			6-Mar-93	1 U	1 Ü	1 U	1 U	1 U	1 U	1 U		<u> </u>
			6-Dec-95	1 U	0.8 J	1 U	1 U	1 U	1 U	1 U		
			9-Feb-96	1 U	_j 1 U	1 U	1 U	1 U	1 U	1 U		
			13-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Methylene Chloride	2
			14-Mar-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		_
			20-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			22-Jan-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
L			10-May-99	1 U	0.4 J	1 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	0.3 J
			22-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	0.8 J
ļ			20-Jun-00	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
Site 5	05 DGMW67A	190	16-Feb-01	10 U	0.3 J	10 U	10 U	10 U	10 U	10 U		-
John J	US_DGMIVU/A	170	19-Sep-01	0.3 J	1 U	1 U	1 U	100	1 U	100		
 			12-Mar-02	1 U	0.6]	0.5 U	1 U	1 U	1 U	1 U		
	*		30-Sep-02	0.3 J	0.6 J	0.5 U	1 U	1 U	1 U	1 U		
			21-Mar-03	, 0.6 J	0.5 J	0.5 U	1 U	1 U	1 U	1 Ü		
			25-Sep-03	0.6 J	0.6 J	0.5 U	1 U	1 U	0.4 J	1 U		
		1	24-Mar-04	1 U	0.5 J	0.5 U	1 U	1 U	0.4 J	1 U		
			30-Sep-04	1 U	0.6 J	0.5 U	1 U	2 U	0.9 J	1 U		
			31-Mar-05	0.6 J	0.5 J	0.5 U	1 U	2 U	1	1 U		
			20-Sep-05	1 U	1 U	0.5 U	1 U	2 U	0.9 J	1 U		
			17-Mar-06	1 U	1 U	0.5 U	1 U	2 U	0.8 J	1 U		
		1										

						P	rimary VO	Cs Detecte Concentr	d and Regations in		andards	
Site	Station ID	Base Screen Depth	Sample Date	тсе	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds I	Detected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 5	05_DGMW68	210	17-Dec-92	1 U	1 U	1 U	1 ប	1 U	1 U	1 U	Methylene Chloride	0.5 J
			29-Jun-93	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			9-Jan-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			27-Feb-96	1 U	1 U	1 U	1 U	1 Ü	1 U	1 U	·	
			15-Nov-96	1 U	1 U	1 U	1 Ü	1 U	1 U	1 U		
	77		5-Mar-97	1 U	ט 1	1 U	1 U	1 U	1 U	1 U	Methylene Chloride	1
			1-Jul-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			17-Oct-97	1 U	1 U	1 U	1 ปั	1 U	1 U	1 U		
			19-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			2-Feb-99	1 U	1 U	1 U	1 Ü	1 U	1 U	1 U		
			13-May-99	1 U	1 U	1 U	1 Ü	1 U	1 U	1 U	Silane	1.5
			22-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U	·	
			20-Jun-00	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			18-Sep-03	1 U	1 U	0.5 U	1 U	1 U	0.9 J	1 U	Bromodichloromethane	0.5 J
				1								
Site 5	05_DGMW68A	186	20-Sep-01	1 U	1 U	1 Ü	1 U	1 U	1 U	1 U		
			12-Mar-02	1 U	1 U	0.5 U	1 U	1 U	0.4 J	1 U		
			27-Sep-02	1 U	1 U	0.5 U	1 U	1 U	0.7 J	1 U		
			19-Mar-03	1 U	1 U	0.5 U	1 U	1 U	0.6 J	1 U	Toluene	0.3 J
			18-Sep-03	1 U	1 U	0.5 U	1 U	1 U	0.9 J	1 U	Bromodichloromethane	0.5 J
			24-Mar-04	1 U	1 U	0.5 U	1 U	1 U	2	1 U	Bromodichloromethane	0.8 J
			30-Sep-04	1 U	1 U	0.5 U	1 U	2 U	2	1 U	Bromodichloromethane	0.8]
			18-Mar-05	1 U	1 U	0.5 U	1 U	2 U	2	1 U		
			7-Sep-05	1 U	1 U	0.5 U	1 U	2 U	2	1 U	Bromodichloromethane	0.7 J
			16-Mar-06	1 U	1 U	0.5 U	1 U	2 U	2	1 U	bromodichloromethane	0.6 J
Site 5	05NEW1	203	28-Dec-95	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			13-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Methylene Chloride	1
			13-Mar-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			9-Jul-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
	 		9-Jul-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		

CDM

						P	rimary VC	OCs Detecte Concent	ed and Regrations in		tandards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds D	etected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 5	05NEW1 (cont.)		21-Oct-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			19-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			2-Feb-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
	,		14-May-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			23-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			19-Jun-00	1 U	1 Ü	1 U	1 U	1 U	1 U	1 U		
			19-Sep-01	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			11-Mar-02	1 U	1 U	0.5 UJ	1 U	1 U	1 U	1 U	2-Butanone (MEK)	4 J
<u> </u>			19-Sep-02	1 U	1 Ü	0.5 U	1 U	1 U	1 U	1 U		
L			14-Mar-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
			17-Sep-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U		
<u> </u>			24-Mar-04	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Methylene Chloride	0.3 J
		_	16-Sep-04	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
			21-Mar-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
			23-Sep-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
<u> </u>			17-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U		
				_								
Site 5	05_UGMW27	238	12-Mar-92	0.6 J	0.9 J	1 U	1 U	1 U	1 U	1 U		
			6-Mar-93	0.6 j	0.8 J	1 U	1 U	1 U	1 U	1 U		
			17-Aug-95	2 J	0.6 J	1 U	1 U	1 U	1 U	1]	Chlorobenzene	1 J
			17-Aug-95								Toluene	2 J
			8-Dec-95	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			29-Jan-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			13-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			13-Mar-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Methylene Chloride	1
			9-Jul-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			9-Jul-97	1 U	1 U	1 U	1 U	1 Ü	1 U	1 U		
			21-Oct-97	1 U	0.5 J	1 U	1 U	1 U	1 U	1 U		
			21-Oct-97	1 U	0.6 J	1 U	1 U	1 U	1 U	1 U	Methylene Chloride	0.3 J
			20-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	0.9 J
			22-Jan-99	1 U	1 U	1 U	1 Ü	1 U	1 U	1 U	Dichlorodifluoromethane	0.9 J

CDM

						P	rimary VC	OCs Detecte Concenti	d and Regations in		tandards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds	Detected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 5	05_UGMW27 (cont.)		10-May-99	1 U	0.3 U	1 U	1 ប	1 U	1 U	1 U	Dichlorodifluoromethane	0.8 J
			21-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Dichlorodifluoromethane	2
Site 5	05_UGMW27A	190	27-Feb-01	10 U	0.3 J	10 U	10 U	10 U	10 U	10 U	Carbon disulfide	0.5]
			27-Feb-01								1,2-Dichloropropane	5 J
			24-Sep-01	1 U	1 U	1 U	1 U	1 U	1	1 U	Bromodichloromethane	0.4]
		1	11-Mar-02	1 U	1 U	1 U	1 Ü	1 U	0.8 J	1 U	Bromodichloromethane	0.4 J
			11-Mar-02	1 U	1 U	0.5 U	1 U	1 U	0.7 J	1 Ü	Bromodichloromethane	0.4 J
			26-Sep-02	1 U	1 บ	0.5 U	1 U	1 U	0.9 J	1 U	Bromodichloromethane	0.5 J
			20-Mar-03	1 U	1 U	0.5 U	1 U	1 U	0.6 J	1 Ü	Bromodichloromethane	0.4 J
Site 17	17_DGMW82	255	6-Mar-93	1 U	1 U	1 U	1 U	1 U	5	1 U	Methylene Chloride	0.9 J
			2-Aug-93	1 Ų	1 U	1 U	1 U	1 U	7	1 U	Methylene Chloride	1 J
			6-Dec-95	1 U	1 U	1 U	1 U	1 U	0.9 J	1 U	· · · · · · · · · · · · · · · · · · ·	
			9-Feb-96	1 U	1 U	1 U	1 U	1 U	0.8 J	1 U		
			20-Nov-96	1 U	1 U	1 Ü	1 U	1 Ü	0.8 J	1 Ü		
			1-Apr-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
		_	9-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			29-Jan-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
ļ			30-Apr-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			16-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U	<u> </u>	
			22-Jun-00	1 U	1 U	1 U	1 U	1 U	10	1 U		
			20-Sep-01	1 U	1 U	10	1 U	1 U	1 U	1 U	Freon-113	0.6 J
ļ			14-Mar-02	10	1 U	0.5 U	1 U	1 U	10	10	Freon-113	0.8 J
<u> </u>	· · · · · · · · · · · · · · · · · · ·		19-Sep-02 19-Mar-03	0.6 J	1 U	0.5 U	1,0	1 U	10	1 U	Freon-113	1
			29-Sep-03	1 U 1 U	1 U	0.5 U 0.5 U	1 U 1 U	1 U	1 U	1 U	Freon-113	0.5 J
		-	29-5ep-03 19-Mar-04	1 U	1 U	0.5 U	10	1 U	10	1 U	Freon-113	1
	 		16-Mar-05	1 U	1 U	0.5 U	1 0	1 U	1 U	1 0	Treom-113	1
		 	22-Sep-05	1 U	1 U	0.5 U	10	2 U	10	1 U	Freon-113	1
		- 	22-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U	Freon-113	2

						P	rimary VC	Cs Detecte Concenti	ed and Reg		tandards	
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CC14	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds D	Detected
		(ft. bgs)		5	5	0.5	6	6	100	1		Result
Site 17	17_NEW1	226	12-Jan-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			20-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			24-Mar-97	0.6 J	1 U	1 U	. 1 U	1 U	1 U	1 U		
<u></u>			30-Jun-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Ethylbenzene	1
			23-Oct-97	1	1 U	1 U	1 U	1 U	1 U	1 U		
			9-Oct-98	1 U	1 U	1 ប	1 U	1 U	1 U	1 U		
			22-Jan-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			30-Apr-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			16-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			22-Jun-00	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			20-Sep-01	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Freon-113	0.6 J
			14-Mar-02	1 U	1 U	0.5 U	1 U	1 Ü	1 U	1 U	Freon-113	0.7 J
			19-Sep-02	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Freon-113	1
			19-Mar-03	1 U	1 U	0.5 บั	1 U	1 U	1 U	1 U	Freon-113	2
			29-Sep-03	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Freon-113	1 J
			19-Mar-04	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Freon-113	0.8 J
			21-Sep-04	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Freon-113	0.7 J
			16-Mar-05	1 U	1 U	0.5 U	1 U	1 U	1 U	1 U	Freon-113	1
			16-Mar-05								Acetone	3 J
			22-Sep-05	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U	Freon-113	1
			20-Mar-06	1 U	1 U	0.5 U	1 U	2 U	1 U	1 U	Freon-12	2
Site 17	17_NEW2	123	3-Jan-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			20-Nov-96	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			24-Mar-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			30-Jun-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			23-Oct-97	1 U	1 U	1 U	1 U	1 U	1 U	1 U	Methylene Chloride	0.4 J
			9-Oct-98	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			29-Jan-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			30-Apr-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		
			16-Jul-99	1 U	1 U	1 U	1 U	1 U	1 U	1 U		

CDM

Former MCAS El Toro GW Monitoring - Round 23

18 of 19

Final September 2006

Table 5 (continued)

Detected Volatile Organic Compounds in Groundwater Former MCAS El Toro, California

						P	rimary VO	Cs Detecte Concentr	d and Reg ations in	-	andards
Site	Station ID	Base Screen Depth	Sample Date	TCE	PCE	CCl4	1,1-DCE	1,2-DCE (Total)	Chloro- form	Benzene	Other Compounds Detected
		(ft. bgs)		5	5	0.5	6	6	100	1	Result

Notes:

Data in this table have been compiled from technical documents provided by other Navy contractors and from measurements taken by CDM during Rounds 12 through 23.

- 1) Bold results meet or exceed regulatory standard.
- 2) Bold Well Station ID indicates the well was sampled during Round 23.
- 3) Table lists results for primary volatile organic compounds (VOCs) detected in groundwater. All concentrations in micrograms per liter (ug/L)
- 4) Data qualifiers: U = not detected above the listed detection limit; J = estimated concentration
- 5) VOC abbreviations and regulatory standards (listed at top of results columns):

Trichloroethene (TCE), federal maximum contaminant level (MCL) 5.0 ug/L

Tetrachloroethene (PCE), federal MCL 5.0 ug/L, Carbon Tetrachloride (CCl4) state MCL 0.5 ug/L

1,2-Dichloroethene (1,2-DCE) total, results include cis-1,2-DCE (state MCL 6.0 ug/L) and trans-1,2-DCE

Chloroform, state MCL 100 mg/L, Benzene, state MCL 1.0 ug/L

ft. bgs = feet below ground surface

Table 6 General Chemistry Analyses Former MCAS El Toro, California

		7111 11050	its in Milligrams pe	r Liter (mg/L)		
o						Alkalinity
Station ID	Sample Date	TDS	Chloride	Sulfate	Nitrate	(as CaCO ₃
00515144	24.6	500	250.0	250.0	10.0	NE
02NEW16	24-Sep-01	820	59.0	179.0	10.5	278
	23-Sep-02	773	62.7	215.0	4.0	308
	21-Sep-05 22-Mar-06	887 845	73.4	283.0	9.3	314
	22-1/101-00	093	79.4	277.0	7.9	307
03_DGMW64A	24-Sep-01	926	122.0	186.0	5.8	350
	25-Sep-02	977	129.0	194.0	6.5	352
•	22-Sep-03	942	135.0	187.0	7.0	351
	30-Sep-04	887	141.0	168.0	6.9	333
	7-Sep-05	909	132.0	147.0	5.4	301
	15-Mar-06	851	152.0	157.0	6.0	299
3_DGMW65XA	19-Sep-01	780	81.1	99.2	7,2	421
	1-Oct-02	901	95.2	99.4	10.3	415
	22-Sep-03	1,040	72.3	114.0	7.3	437
	29-Sep-04	821	111.0	84.9	9.6	397
	7-Sep-05	764	73.4	99.4	6.1	439
	15-Mar-06	823	104.0	86.5	5,9	477
05NEW1	28-Dec-95	789	99.1	200.0	11.1	248
	13-Nov-96	878	99.0	219.0	12.0	252
i	13-Mar-97	850	88.7	196.0	11.1	251
-	9-Jul-97	911	112.0	206.0	9.9	256
	9-Jul-97	918	108.0	209.0	9.8	256
	21-Oct-97	928	103.0	212.0	8.2	256
	19-Jun-00	906	115.0	250.0	6.9	260
	19-Sep-01	883	93.3	212.0	13.0	276
	19-Sep-02	924	97.7	226.0	7.7	264
	17-Sep-03	898	92.4	225.0	7.5	272
	23-Sep-05	886	117.0	242.0	8.2	274
-	17-Mar-06	860	95.1	243.0	7.3	256
17_DGMW82	8-Feb-93	817	101.0	315.0	0.9	155
Į	3-Jun-93	912	106.0	331.0	1.1	192
[6-Dec-95	785	NA	187.0	2.0	272
	9-Feb-96	767	96.0	182.0	NA	272
1	20-Nov-96	760	113.0	172.0	1,4	272
1	1-Apr-97	736	85.0	137.0	2.0	258
ļ	19-Sep-02	760	127.0	121.0	1.3	299
	29-Sep-03	949	119.0	121.0	2.2	421
1	21-Sep-04	726	117.0	119.0	2.6	300
	22-Sep-05	635	122.0	131.0	1.9	292
-	22-Mar-06	676	118.0	124.0	2.1	288
17NEW1	3-Jan-96	526	114.0	46.1	1.1	244
. [20-Nov-96	450	90.4	47.4	4.8	192
	24-Mar-97	492	80.2	35.7	4.8	200
	8-Jul-97	954	248.0	100.0	11.7	194
Ĺ	8-Jul-97	869	254.0	102.0	12.0	196
Į	23-Oct-97	961	240.0	103.0	10.2	191
-	23-Oct-97	1,070	242.0	103.0	10.0	189
		040	269.0	110.0	6.8	186
1	14-Jun-00	949	207.0	110.0	0.0	100
<u> </u>	14-Jun-00 29-Sep-03	643	83.8	77.7	11.1	242
- - -						

Notes:

Abbreviations: MCAS = Marine Corps Air Station, U = Concentration is below instrument detection limit (not detected), NE = None Established.

¹⁾ Regulatory Standards for Parameters listed:

Nitrate/Nitrite-N - 10 mg/L Federal maximum contaminant level (MCL), TDS (Total Dissolved Solids) - 500 mg/L Federal Secondary MCL, Chloride - 250 mg/L Federal Secondary MCL, Chloride - 250 mg/L Federal Secondary MCL

^{2) &#}x27;Bold results = Result exceeds regulatory standard

^{3) &#}x27;Bold Station ID = Well Sampled during Round 23

Table 7
Results of Radionuclides Analysis
Former MCAS El Toro

	1		Total Gross Alp	oha .	· 	Total Gross Be	eta
Sample ID	Date	Activity	Error	MDA (pCi/L)	Activity	Error	MDA (pCi/L)
•		(pCi/L)		1 ", '	(pCi/L)		4, -,
			MCL = 15			MCL = 50	•
02_DGMW59	15-Dec-92	16.3	-	-	14.1	-	<u> </u>
	23-Jun-93	21.6	-	-	15.8	-	-
	16-Aug-95	4.8	-	-	7.90J	-	<u> </u>
	7-Feb-96	9.01	-	-	-0.97	-	-
	7-Feb-96	10.16	-	-	0.26	-	-
	4-Nov-96	12.51	-	-	2.93	-	-
	26-Mar-97	5.7	-	-	2.06	-	•
	3-Jul-97	16.98	-	-	8.36	-	-
	27-Oct-97	11.47	-	-	5.34	-	-
	7-Oct-98	13J	3.1	4	4.5J	2	3.2
	24-Sep-01	10.5	5.9	7.9	8.2	5.7	9.1
•	23-Sep-02	22.9J	9.5	12	10.6	4.9	7.4
	29-Sep-03	12.1	5.5	6	8.8		6
	21-Sep-04	9.01	2.47	3.33	7.83	1.88	3.03
	21-Sep-05	3.13	2.12	3.2	6.56	-	4.27
	21-Mar-06	7.91	2.0	3.0	4.22	2.28	4.0
02_DGMW60	18-Nov-92	20.9	-	-	10.8	-	-
	23-Jun-93	24	-	-	30.2	-	-
	15-Aug-95	20.6	-		13.00J	-	-
	28-Nov-95	26	-	_	14.8	-	-
	7-Feb-96	22.93	-	-	-1.69		-
	7-Feb-96	16.71	_	-	0.33	<u> </u>	_
	4-Nov-96	32.16		-	13.58	-	-
	26-Mar-97	36.16	-		17.65	-	
	1-Jul-97	36.82			19.05		-
	28-Oct-97	30.41	-		14.69	<u> </u>	-
	28-Oct-97	31.27	·	ļ — — — — — — — — — — — — — — — — —	5.43		-
	12-Oct-98	42.6J	5.8	4.4		-	
	25-Jan-99			l	29.1J	3.8	3.4
•		46.8J	0.8	2.7	29.5	0.6	2.9
	3-May-99	60.5J	0.2	2.6	30.5J	0.6	2.6
	22-Jul-99	53.5J	0.7	3.6	27.1J	0.5	3.1
	27-Apr-99	32.1J	-	1.8	15.2J	-	1.9
	19-Jul-99	26.7J	•	3.4	14.4J	0.2	2.5
	21-Jun-00	67 J	16	-	23 J	11	•
	24-Sep-01	15.5	5.9	5.8	19.8	6.5	9.3
	23-Sep-02	60J	14	11	27.2	6.4	8.1
02_DGMW61	14-Dec-92	6.5	<u> </u>	-	8.9	-	-
02_DGM17701	22-Jan-93	9.2			10.5		<u>-</u>
	16-Aug-95	10.20J	_	_	6.30J	-	-
	29-Nov-95	14.3	-	-	9.4		-
	7-Feb-96	23.91	-	-	6.35	-	-
	4-Nov-96	18.24	-	•	5.41	-	-
	26-Mar-97	17.91	-	-	9.35	-	•
	2-Jul-97	18.46	_	_	6.76	_	
	28-Oct-97	19.06	-		5.43	-	
•	8-Oct-98	27.3J	3.9	3.3	13.9J	2.2	2.6
	25-Jan-99	24.3J	0.3	2	15.5J	0.3	2.5
	27-Apr-99	32.1J	-	1.8	15.3J 15.2J		1.9
	19-Jul-99	26.7J	<u>-</u>	3.4	13.2J 14.4J	0.2	2.5
	17-141-77	40.7 J	_	3,4	14.4]	U.Z	2.5

			Total Gross Alp	ha		Total Gross Be	ta
Sample ID	Date	Activity	Error	MDA (pCi/L)	Activity	Error	MDA (pCi/L)
		(pCi/L)	<u> </u>		(pCi/L)		<u> </u>
			MCL = 15			MCL = 50	
	21-Jun-00	32 J	11	-	12 J	8	-
	24-Sep-01	31	7.3	4.3	11.1	5	7.7
	23-Sep-02	35.6J	8.8	6.3	14.1	4.3	5.9
02NEW2	21 Dec 05	9.90U			(207.7		
UZINEVVZ	21-Dec-95		 	-	6.20U	-	<u>-</u>
	26-Nov-96 26-Mar-97	28.29	·	•	3.4	-	-
		13.44	-	<u>-</u>	11.7	-	
•	3-Jul-97 27-Oct-97	15.34 13.7	-	·	10.35	-	-
	8-Oct-98	13.7 14J	0.5	3.2	4.31 9.1J	2	27
	27-Jan-99	15.4J	0.3	2.4	8.5J	0.8	2.7 2.5
	4-May-99	20.1J	0.1	2.4	8.3J	0.7	2.3
	20-Jul-99	18.1J	0.9	2.4	9.7J	· · · · · · · · · · · · · · · · · · ·	
	20-Jun-00	7.4 UJ	7.1	2.4	6.4 UJ	0.6 6.8	2
	24-Sep-01	18	5.3	4.7	9.9	4.1	6.3
	23-Sep-02	17.7J	6.4		13.5	ļ	
	29-Sep-02	13.5 J	4.8	6.3 4.6		3.2	6.6
	21-Sep-04	14.5	2.66	2.52	9.6 J 16.1	2.2	2.94
	21-Sep-05	14.8	4.06	3.88	9.25	2.2	5.29
	22-Mar-06	31.9	3.29	3.0	11.5	2.55	4.0
00277777							
02NEW7	1-Oct-04	15.3	2.3	1.94	3.86	0.958	1.34
	26-Sep-05	14.2	-	3.13	7.87	-	3.45
	16-Mar-06	28.2J	2.8	3.0	10.3	1.92	4.0
02NEW8A	27-Dec-95	16.3	_		6.3	_	-
	7-Nov-96	24.2	-	-	5.77	_	<u>-</u>
	25-Mar-97	27.29	_	_	5.71	_	-
	8-Jul-97	17.57	-	-	11.62		
	27-Oct-97	15.34	_	-	13.22	-	
	14-Oct-98	22.1J	3.2	2.7	14.8J	2	2.1
	14-Oct-98	24.6J	3.3	2.2	15.3J	2.1	2.2
	27-Jan-99	25.8J	0.2	1.7	14.4]	0.9	1.8
	27-Apr-99	26.1J	0.5	2.3	17.5J	0.2	1.8
	20-Jul-99	26.3J	0.8	3.1	4.8J	0.2	2.5
	21-Jun-00	36 J	9.9		8.1 UJ	7	
	24-Sep-01	24.7	5.9	4.3	11.5	3.7	5.3
	23-Sep-02	45	10	8	11.4	4.7	7
	23-Sep-02	47J	11	7	17.9	5.1	6.9
	23-Sep-03	25.9	6.5	5.3	16.6	3.4	4
	20-Sep-04	27	3.2	2.33	18.2	2.14	2.72
	20-Sep-05	26.1	6.67	4.46	12.3		5.93
	16-Mar-06	25.4 J	5.93	3.0	10.1	3.04	4.0
			5.50	0.0		3.01	4.0
02NEW11	21-Dec-95	6.60U	-	-	5.30U	-	-
	7-Nov-96	6.92	-	-	1.39	-	
	25-Mar-97 8-Jul-97	7.78 6.14			2.84	-	
	23-Oct-97	6.55	-		5.87 6.53	-	•
	14-Oct-98	7.1J	2.2	3.2	7.2J	1.8	2.7
	21-Jan-99	7.7J	0.6	1.7	6.4J	0.5	2.7
	26-Apr-99	6.9J	0.9	2.4	5.6J	0.4	2

		T	otal Gross Alp			Total Gross Be	
Sample ID	Date	Activity	Error	MDA (pCi/L)	Activity	Error	MDA (pCi/L
		(pCi/L)	MCL = 15	L	(pCi/L)	MCL = 50	1.
02NEW11 (cont.)	15-Jul-99	9.6J	0.9	2.2	7.2J	0.3	1.6
oznenia (com.)	22-Jun-00	17]	9.1	-	1.3 UJ	7.1	-
	22-Jun-00	9.7 UJ	7.7	ļ	8.8 UJ	6.5	-
	24-Sep-01	10.9	3.9	3.8	9.6	3.2	4.6
	23-Sep-02	16.2J	6	6.4	10.4	4	5.8
	23-Sep-02	15.9J	5.7	5.8	11.3	3.5	4.7
	29-Sep-03	6.1 J	3.4	4.5	6.5	2.3	3.4
	20-Sep-04	6.73	2.09	3	6.76	1.69	2.75
	20-Sep-05	15	4.44	4.91	7.57	_	5.97
	21-Mar-06	5.31 J	3.12	3.0	7.31	2.56	4.0
CATELANT	12 Oct 09		3.8	4.3	0.51	2.4	3.6
02NEW15	12-Oct-98	20J	l 		9.5J	l	1
•	1-Feb-99	20.4J	0.5	3.4	10.5J	0.3	3.3
	26-Apr-99	14.1J	0.1	3.7	7.6]	0.1	3.2
	19-Jul-99	23.8J	0.1	3.9	7.7]	0.1	3.1
	22-Jun-00	13 J	10	-	-6.6 UJ	10	<u>-</u>
	24-Sep-01	9.7 J	5	6.4	6.7 UJ	4.6	7.4
	24-Sep-01	15.7 J	6	6.7	8.4 J	4.9	7.7
	23-Sep-02	15.6J	7.2	9	8.5	4.5	7
	22-Sep-03	22.6	7.8	8	7.3	3.9	6
	23-Sep-04	14.6	2.82	3.05	10.2	1.88	2.88
	21-Sep-05	7.49	4.39	6.14	9.2	-	7.66
	22-Mar-06	16	2.31	3.0	6.78	1.84	4.0
02NEW16	8-Oct-98	17.2J	3	3.3	10.3J	2	2.7
	24-Sep-01	15.8	5	4.9	10.1	3.5	5.1
	23-Sep-02	30.9J	7.9	5.7	15.3	4.2	5.4
	21-Sep-05	40.3	10	7.02	23.2	-	9.12
	22-Mar-06	32.2	3.56	3.0	12.6	2.6	4.0
DC DC MAKA	15-Jan-93	14.2			13.1		
03_DGMW64	2-Jun-93	14.3	<u>-</u> -	-	16.6	-	-
	26-Feb-96	11.14	-	-	2.97	-	-
	12-Nov-96	13.33	-	-	7.29	-	 _
	12-Nov-96	13.33	•		7.27		-
	4-Mar-97	16.6	-	<u>-</u>	7.08		_
	30-Jun-97	19.99	-	-	7.11		
	16-Oct-97	20.18	<u> </u>		10.85		<u> </u>
	13-Oct-98	14.1J	3.3	4.2	13.8J	2.6	3.3
03_DGMW64A	19-Sep-01	28.2	8.4	7.2	10.7	5.1	7.8
	25-Sep-02	4 0J	10	8	18.1	5.3	7.1
	22-Sep-03	31.8	7.2	4.3 .	17.4	3.6	4.1
	30-Sep-04	22.6	3.25	2.93	8.94	1.64	2.25
	7-Sep-05	20.6	-	11.3	18.5	-	17.3
	15-Mar-06	21.5J	2.87	3.0	14.2	2.17	4.0
03_DGMW65X	18-Jan-93	8.6	-	-	8.8	-	-
	7-Jul-97	14.5	-	ii	13.2	-	-
	26-Feb-96	15.56	_		9.79	-	-
	11-Nov-96	14	_	-	2.19	-	-
		16.38		I	6.93		
	4-Mar-97	10.30	-	I - I	0.53	-	-

		1	otal Gross Alp	ha		Total Gross Be	ta
Sample ID	Date	Activity	Error	MDA (pCi/L)	Activity	Error	MDA (pCi/L)
•		(pCi/L)	İ	1	(pCi/L)		
			MCL = 15			MCL = 50	
03_DGMW65X (cont.)	15-Oct-97	15.26	-	-	13.88	<u>-</u>	-
, ,	13-Oct-98	13J	2.8	3.3	11.8J	2.4	3.2
	29-Jan-99	16.1J	0.8	2.7	10.9J	-	2.5
	6-May-99	20.5J	0.4	3.1	10.9J	-	2.6
•	26-Jul-99	19.2J	0.7	4.1	11.7J	0.3	3.1
	19-Jun-00	19 J	11	-	8.1 UJ	10	
	19-Jun-00	18 J	10	-	7.2 UJ	11	•
03_DGMW65XA	19-Sep-01	26.5	9	10	7.6	4	6.2
	1-Oct-02	24.8	7.2	5.9	11	4.1	5.9
	22-Sep-03	25.7	7	5.6	12.6	3.4	4.5
	29-Sep-04	22.7	3.14	3.05	4.8	1.28	1.8
	7-Sep-05	15.1	-	13.3	14.8	-	14.6
	15-Mar-06	31.2J	9.29	3.0	15.5	5.71	4.0
03_UGMW26	1-Oct-92	14.2	-	-	10.9	-	-
	23-Jan-93	14.5	•		10.7	-	•
	7-Feb-96	3.77	-	-	15.8	-	-
	14-Nov-96	13.3	<u>-</u>	-	1.23	-	-
	14-Nov-96	14.37	-	-	2.22	-	-
	6-Mar-97	14.52	-	-	0.39	-	<u>-</u>
	1-Jul-97	9.34	-	-	4.57	-	<u>-</u>
	17-Oct-97	22.11		-	5.77	-	
	13-Oct-98	12.6J	2.7	3.3	9.8J	2	2.7
	3-Feb-99	14.2J	0.4	2.3 1.9	9J 9.6J	0.7	1.7
	5-May-99	13.1J 15.5J	0.2	2.5	7.2J	0.7	2.5
	22-Jul-99 19-Jun-00	<u>-</u>	9.7	2.5	4.7 UJ	8.1	2.5
	20-Sep-01	18 J 15.5	6.7	7.8	9.9	4.8	7.4
03_UGMW26A	20-Sep-01	31.9	9	7.4	15.4	5.1	7.3
US_UGIVIVV20A	2-Oct-02	33.3	9.1	7.3	13.6	4.8	6.9
			9.1	7.5		4.0	0.7
04_DBMW40	26-Feb-96	15.23	-		10.21	-	-
	12-Nov-96	25.98		-	6.55	-	-
	5-Mar-97	10.42		-	8.16	-	-
	30-Jun-97	28.18	-	-	9.72	-	-
	16-Oct-97	19.43	-	-	15.06	-	-
	15-Oct-98	21.6J	3.5	3.3	14.5J	2.6	3.3
	4-Feb-99	17.8J	-	2.6	12.7J	0.2	2.7
	7-May-99	17.8J	0.2	3	10J	-	2.8
	26-Jul-99	23.6J	0.7	3.3	10.4J	0.2	3.1
	19-Jun-00	34 J	13		7.6 UJ	11	-
	19-Sep-01	9.7	5.6	7.5	9	3.9	5.9
	18-Sep-02	26.6	8.2	7.0	15.8	5.1	7.1
	23-Sep-03	26.9	6.9	4.7	13.6	3.6	4.7
	20-Sep-04	13.5	2.25	1.14	9.23	1.86	2.91
	20-Sep-05	11.8	3.62	3.68	12.8	-	5.82
	17-Mar-06	16.7J	2.53	3.0	12.1	2.23	4.0
04_UGMW63	24-Nov-92	NA	NA	NA	11.3	-	-
	30-Jan-96	14.41	-	-	4.44	-	-

			Total Gross Alp			Total Gross Be	
Sample ID	Date	Activity	Error	MDA (pCi/L)	Activity	Error	MDA (pCi/L)
-	1	(pCi/L)			(pCi/L)	<u> </u>	<u> </u>
	<u> L</u>		MCL = 15			MCL = 50	· ·
04_UGMW63 (cont.)	14-Nov-96	22.86	-	-	3.06	-	-
	14-Nov-96	21.89	-		2.67	-	•
	15-Oct-98	13.4]	2.5	2.8	10.2J	1.9	2.5
	4-Feb-99	13.6J	0.3	2	10.2J	-	2.5
	5-May-99	18.2J	0.8	1.9	12.8J	0.9	2.2
	26-Jul-99	19.3J	0.3	3.3	13.3J	0.2	2.7
	19-Jun-00	19 UJ	12	-	7.1 UJ	8.2	-
	19-Sep-01	27	10	11	17.3	6.8	10
	18-Sep-02	28.3	9.7	11	11.8	4.7	6.8
	23-Sep-03	17.4	7.6	9.1	14.6	5	7
	20-Sep-04	11.1	2.34	2.74	9.93	1.73	2.61
	19-Sep-05	14.7	6.27	6.38	11.6	-	9.17
	19-Sep-05	12.6	3.7	3.61	10.6	-	4.78
	16-Mar-06	17.1J	6.28	3.0	14.5	5.27	4.0
CA DOMESTICA	26 F 1 06	2.70			0.22		
04_DGMW66	26-Feb-96 12-Nov-96	2.78 7.45			9.33 1.36	-	<u>-</u>
	4-Mar-97	7.43	<u>-</u>	-	2.73		
	1-Jul-97	8.75		<u> </u>	6.88	<u> </u>	
	15-Oct-97	8.71	ļ		4.87	-	
	16-Oct-98	5.9]	1.6	2	4.3J	1.7	2.7
	19-Sep-01	8.4 UJ	5.9	8.5	8.6 J	4.6	7.2
	19-Sep-01	10.4 J	6.6	9.2	27.7 J	6.7	8.7
				1.7			44
04_DGMW66A	19-Sep-01	72	19	15	38	11	14
	30-Sep-02	45	15	14	34.7	9.5	12
	25-Sep-03	92.4	9.9	8.7	19.2 J	5.4	7.2
·	29-Sep-04	30	4.14	3.82	7.01	1.89	2.77
	7-Sep-05	18.1	<u> </u>	5.51	18.6	<u> </u>	6.26
	16-Mar-06	31.7J	3.13	3.0	16.1	2.13	4.0
05_DBMW41	16-Nov-92	9	 	 	5.9	 	-
00_DDIVIVY1	16-Nov-92	9.4	-		6.3	-	
	5-Dec-95	27			18.6		-
	7-Feb-96	26.37		-	9.3		<u> </u>
	13-Nov-96	29.04		-	5.68	 	
	13-Mar-97	21	-		4	<u> </u>	
N.	8-Jul-97	23.56	-	<u>-</u>	15.82		
,	21-Oct-97	23.45		-	5.74		-
		26.5J	4	3.6	14.4J	2.6	3.4
	16-Oct-98					0.9	2.6
	3-Feb-99	24.2J	0.4	2.2	12.6J		
	10-May-99	23.2J	0.4	2.3	10.4J	0.8	2.3
	22-Jul-99	23.8J	0.4	2.6	11.7]	0.1	2.8
	19-Jun-00	11 UJ	11	<u> </u>	9.6 UJ	8.2	<u>-</u>
05_DBMW41A	19-Sep-01	26.7	8.6	8.4	10.8	5.1	7.9
	30-Sep-02	28.6	7.9	6.1	16	4.7	6.2
	18-Sep-03	15.1	6	6.8	12.6	3.8	5.1
	30-Sep-04	15.6	2.81	2.96	6.45	1.54	2.22
	8-Sep-05	14.9	-	2.73	15.3	-	5.21
	15-Mar-06	15.6J	4.73	3.0	8.47	2.87	4.0

Sample ID 05_DGMW67	Date	Activity	otal Gross Alp Error	MDA (pCi/L)		Total Gross Be	
				IMDA (PCI/L)	Activity	Error	MDA (pCi/L)
05_DGMW67		(pCi/L)			(pCi/L)		
05_DGMW67			MCL = 15			MCL = 50	
	30-Nov-92	15	-	- 1	7.7	-	•
	30-Nov-92	24.9	-	-	53	-	-
	3-Jun-93	16.7	-	-	19	-	-
	6-Dec-95	23.2	-	-	9.6	-	-
	7-Feb-96	22.11	-	-	6.07		-
	13-Nov-96	19.58	-	-	1.35	-	-
	14-Mar-97	24.6	-	- 1	4.14	-	-
	20-Oct-98	15.1J	3.1	3.7	10.9J	2.4	3.4
	22-Jan-99	16.2J	0.7	2.3	10.5J	-	2.7
	10-May-99	16.6J	0.8	2.5	7.2J	0.7	2.4
	21-Jul-99	15.7J	0.2	3.7	9.9J	0.9	2.6
	20-Jun-00	14 J	9.2	-	2.4 UJ	8.3	-
or DOLGUES		·		-			
05_DGMW67A	19-Sep-01	14	6.1	6.7	8.5	5	7.9
	30-Sep-02	18	7.1	7.7	11.4	4.5	6.5
	25-Sep-03	8	4.3	5.5	8.6	3.1	4.5
	30-Sep-04	7.77 9.78	2.47 5.84	3.58	3.08	0.98	1.33 10.2
	20-Sep-05 17-Mar-06	9.78 10.4J	1.99	9.71	10.5 7.52	2.04	4.0
			1.99	3.0		2.04	4.0
05_DGMW68	17-Dec-92	7		-	13.6	-	-
	25-Jun-93	10.8	-	-	12.4	-	<u>-</u>
	9-Jan-96	11.6			10.9		
	15-Nov-96	20.4	<u> </u>		3.75	· •	<u> </u>
	5-Mar-97	19.21	-	-	8.28	-	-
	1-Jul-97	19.69		-	7.62	•	<u>-</u>
	17-Oct-97	13.63 3.7J	· · · · · · · · · · · · · · · · · · ·	3.2	0.36 5.9J	1.7	-
	19-Oct-98 2-Feb-99	7.9J	2 0.7	1.8	4.8J	0.6	2.6 2.4
	13-May-99	6.9J	0.7	2.4	5.1]	0.5	2.3
	22-Jul-99	5.8J	0.8	2.4	6.3]	0.5	2.1
	20-Jun-00	14 J	8	-	8.6 UJ	6.9	-
05_DGMW68A	20-Sep-01	15.9	6.7	7.8	11.1	4.3	6.4
	27-Sep-02	29.6J	8.2	6.6	10	4.2	6.2
	18-Sep-03	18.8	6.2	5.9	11.7	3.5	4.8
	30-Sep-04	17.9	2.87	2.99	4.88	1.28	1.8
	8-Sep-05	17.7	-	2.87	10.7	-	4.54
	16-Mar-06	26.4J	6.63	3.0	9.89	3.22	4.0
05 110) (1105	1 2 2 2 2 2			ļ			
05_UGMW27	3-Jun-93	9.3 13.3	-	-	14.1	<u>-</u>	<u>.</u>
	17-Aug-95 8-Dec-95	12.4			5.1 8.2	<u>-</u>	<u>-</u>
	29-Jan-96	15.89			2.55	<u> </u>	-
	13-Nov-96	14.67	<u> </u>		2.21	<u>-</u>	-
	13-Mar-97	18.17	-	-	7.91	<u>-</u>	-
	9-Jul-97	14.41			6.16		-
	9-Jul-97	17.42	-	-	7.36	-	-
	21-Oct-97	18.39		-	2.74		•
	21-Oct-97	18.39	-		3.52		<u>-</u>
				3.3		2.3	3.3
	20-Oct-98	11.7J	2.7	1 3.3 1	10.7J	2.3	3.3

		7	otal Gross Alp	ha		Total Gross Be	ta
Sample ID	Date	Activity	Error	MDA (pCi/L)	Activity	Error	MDA (pCi/L)
	,	(pCi/L)			(pCi/L)		
			MCL = 15			MCL = 50	
05_UGMW27A	24-Sep-01	12.3	5.3	6.4	9.8	4.4	6.8
	24-Sep-01	11.3	4.8	5.5	10	4.6	7.1
	26-Sep-02	26.1J	8.2	7.1	8.4J	4.6	7.1
	26-Sep-02	21.8J	7.6	7.3	<i>7</i> J	4.7	7.4
05NEW1	28-Dec-95	3.4		_	3.8	_	
	13-Nov-96	10.05	<u>.</u>	 	3.5		-
	13-Mar-97	8.34	_	-	9.02	-	
	9-Jul-97	4.88	-	-	7.68	-	
	9-Jul-97	8.75	-	-	14.45	-	_
	21-Oct-97	6.92	-	_	3.82	-	-
	19-Oct-98	11.7J	2.3	2.5	9.7]	1.9	2.6
	2-Feb-99	11.1J	0.3	2.4	11.3J	0.1	2.8
	14-May-99	14.7J	2.3	2.3	9.5J	0.8	2.4
	23-Jul-99	12.2J	0.9	3.5	9.1J	0.1	3
•	19-Jun-00	18 J	10	-	7.7 UJ	9.6	-
	19-Sep-01	12.3	4.7	4.6	12.4	3.5	4.7
	19-Sep-02	10.3	5.1	6.1	10.0	3.7	5.4
	17-Sep-03	15.8	5.6	5.2	10.0	3.7	5.4
	16-Sep-04	8.55	2.38	3.27	7.89	1.85	3.02
	23-Sep-05	10.6	2.48	2.43	7.12	2.37	4.04
	23-Sep-05	10.9	3.13	2.51	14.5	-	6.39
	17-Mar-06	12.5J	2.1	3.0	8.19	2	4

Notes

- 1) Wells in Table 7 consist of wells that have been sampled during Rounds 12, 14, 16, 18, 20, 22, and 23. Historical results are also presented for these wells.
- 2) Dash indicates this value was not available.
- 3) Abbreviations:
 - J = estimated value, MCAS = Marine Corps Air Station, MDA = minimum detectable activity, NA = not analyzed, pCi/L = picoCuries per liter, U = not detected, UJ = analyte not detected, detection limit estimated MCL = Maximum contaminant level
- 4) Bold result = Result exceeds regulatory standard; Bold Sample ID = Well sampled during Round 23.
- 5) Final Technical Memorandum, *Phase II Evaluation of Radionuclides in Groundwater at Former Landfill Sites and EOD Range, Marine Corps Air Station El Toro*, prepared by Earth Tech, Inc., dated December 2001 concluded that radionuclides detected in groundwater are naturally occurring.

Table 8 Metals Analyses Former MCAS El Toro, California

TARCET ANALYTE	FIIST META	LS AND REGULATOR	RY STANDAR	RDS	All Results	in Micros	grams per Lif	er (ug/L)									-					· · · · <u> </u>				•
TARGET ANALITE	E LIST WIETA	LIS AND REGULATOR	Y		· · · · · ·		Beryllium		Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
i	Base		Aluminum	Anunony	Arsenic	Darium	Derymum	Caumum	Calcium	Ciuonaan	Cobair	Соррег	11011	1	Mugnesiani	I William Burnese	, mereury	inci) cuciiuii	- Tracker							
Station ID	Screen Depth	Sample Date - Type	50	6	10	2000	4	5	NE	100	NE	1000	300	15	NE	50	2	NE	100	NE	50	100	NE	2	NE	5000
	(ft bgs)				<u>, l</u>										<u> </u>		<u> </u>			<u> </u>			<u> </u>			<u> </u>
02_DGMW59	89	15-Dec-92 F	672.0	12.1 U	1.8 B	49.9 B	NS	NS	NS	3.7 U	NS	2.5 B	895.0	0.6 ป	34,100	239.0	NS	NS	10.2 B	. Commercial and the second control of the second	1.9 BW	2.2 B	95,500	NS	8.3 B	34.4
	. v	23-Jun-93 F	7.8 B	9.7 B	0.7 B	65.6 B	NS	NS	NS	2.9 Ü	NS	0.8 B	41.4 B	0.4 U	80,400	63.0	NS	NS	183.0	8,200	15.0 N	1.2 U	126,000	NS	5.9 B	5.1 B
Second design with the control of	A.A. All A MANAGEMENT AND A STREET CONTRACTORS	16-Aug-95 F	12.2 U	2.4 U	2.2 B	110.0 B	NS	NS	NS	1.3 U	NS	4.5 B	26.6 J	1.7 U	47,400	367.0 J	NS	NS NS	15.5 B	2,800 B	4.9 B	1.5 U	104,000	NS	6.4 B	10.8 B
	. v.a. v.a. an v.an	30-Nov-95 F	26.0 U	2.2 U	3.3 B	80.6 B	NS	NS	NS	0.9 J	NS	4.8 B	54.5 J	1.5 U	38,800	60.9 J	NS NG	NS NS	11.7 J	2,400 B	11.2 J	0.8 U	105,000	NS NC	7.8 B	10.6 J
		6-Feb-96 F	200.0 U	60.0 U	10.0 U	200.0 U	NS NS	NS	NS	10.0 U	NS NC	25.0 U	100.0 U	3.0 U	42,000	15.0	NS NC	NS NC	40.0 U	2,250 J	20.0	10.0 U	111,000	NS NS	50 U 50.0 U	20.0 U 20.0 U
	w. v.c. (1.20m.next) next extensive (1.	6-Feb-96 UF	420.0	60.0 U	10.0 U	200.0 U	NS	NS	NS	21.0 10.0 U	NS NC	30.0	1200.0 100.0 U	3.0 U 3.0 U	41,000 42,000	43.0	NS NS	NS NS	40.0 U 40.0 U	2,290 J 2,290 J	20.0 18.0	10.0 U 10.0 U	109,000	NS NS	50.0 U	20.0 U
Marie Co. (1997)		6-Feb-96 F	200.0 U	60.0 U	10.0 U 10.0 U	200.0 U 200.0 U	NS NC	NS NC	NS NC	21.0	NS NS	25.0 U 25.0 U	880.0	3.0 U	42,000	56.0	NS	NS NS	40.0 U		17.0	10.0 U	111,000	NS NS	50 U	20.0 U
	a militaria de la como de la como de la como de la como de la como de la como de la como de la como de la como	6-Feb-96 UF	460.0 40.7 B	60.0 U 60.0 U	2.8 B	103.0 B	NS NS	NS i	NS NS	2.1 B	NS NS	5.6 B	30.3 B	5.0 U	43,100	84.9	- NS	NS	16.5 B	2,180 B	3.5 B	10.0 U	102,000	NS	8.3 B	11.8 B
 		4-Nov-96 * F 26-Mar-97 * F	200.0 U	60.0 U	4.5 B	46.3 B	NS NS	NS I	NS NS	1.1 B	NS	5.0 B	7.5 B	5.0 U	26,100	2.1 B	NS	NS	16.8 B	1,520 B	4.6 B	10.0 U	61,700	NS	8.5 B	6.3 B
and the state of t		25-Sep-01 * F	56.3 U	4.9 U	3.1 B	106.0 B	NS NS	NS	NS	17.8	NS	4,4 U	130.0	0.8 บ	41,300	67.4	NS	NS	17.4 B	2,110 B	1.7 U	0.3 U	105,000	NS	11.1 B	22.3
ver-200000-A-200000-000-000-000-000-000-000		23-Sep-02 * F	40.2 J	60.0 U	10.0 U	79.7 J	NS	NS	NS	2.3 J	NS	2.0 J	25.5 U	3.0 U	34,400	1.2 J	NS	NS	29.3 J	1,630 J	5.4	10.0 U	76,300	NS	6.9 J	21.4
	1004 10 1000 2000 2000 1000 1000 1000	24-Sep-03 * F	52.7 J	3.4 U	1.9 U	119.0 J	NS	NS	NS	28.9 J	NS	6.5 ป	126.0 U	6.8	44,600	4.9 J	NS	NS	23.5 J	1,880 J	3.8 U	2.4 U	80,800	NS	9.6 J	43.7 U
in vocasius, accessorie cotre restantece consettation tenne environmente e e		21-Sep-04 * F	10.0 UJ	2.2 U	11.2 U	117.0 B	NS	NS	NS	2.7 B	NS	1.7 J	36.8 J	0.9 U	40,800	5.5 U	NS	. NS	15.6 J	1,730 B	2.7 U	0.8 บ	78,200	NS	9.6 B	6.0 U
AND THE PROPERTY OF THE PROPER	ALAMAN AND AND AND AND AND AND AND AND AND A	21-Sep-05 * F	18.7 U	60 U	3.7 J	110 J	5.0 U	5.0 U	137,000	2.5 J	0.48 U	3.3 U	5.6 U	3 U	34,100	1.1 U	0.38 UJ	9.2 U	4.9 U	1,620 J	5.0 U	10 U	69,500	2.9 U	10.4 J	4.5 U
	groupe	21-Mar-06 * F	200 U	60 U	5.6 U	134 J	5.0 U	5.0 U	172,000	3.5 J	50 U	11.8 J	24.3 U	3 U	44,900	15.0 U	0.059 U	8.1	5.4 J	1,670 J	5.9	10 U	82,400	10 U	9 J	12.1 J
			01.0.17	10.1 11	07.11	50.0 P	NIC	NIC	NIC	3.7 U	NIC	4.1 B	57.1 B	0.6 U	64,000	24.1	NS	NS	7.7 U	7,740	8.0 BN	2.1 U	129,000	NS	7.0 B	6.6 B
02_DGMW60	100	18-Nov-92 F	31.0 U	12.1 U	0.7 U 1.6 B	59.8 B 36.7 B	NS NS	NS NC	NS NS	2.9 U	NS NS	1.9 B	31.8 B	0.4 U	29,500	42.2	NS NS	NS	31.3 B	4,390 B	3.3 BSN	1.2 U	77,400	NS	6.9 B	8.0 B
		23-Jun-93 F	20.2 B 12.1 U	12.4 B	2.1 U	77.1 B	NS NS	NS NS	NS	1.3 U	NS	1.5 B	24.1 UJ	1.7 U	96,500	4.6 J	NS	NS	8.0 B	10,700	13.3	1.5 U	126,000	NS	7.7 B	1.2 B
11 (12 th 11 1) - 198 + 1 · · · · · · · · · · · · · · · · · ·		15-Aug-95 F 28-Nov-95 F	12.1 U	2.4 U	3.0 U	69.4 B	NS	NS NS	NS	0.7 B	NS	0.7 U	18.5 U	1.5 U	94,900	1.6 B	NS	NS	5.3 B	10,600	15.2	0.8 U	131,000	NS	7.1 B	1.5 U
		6-Feb-96 F	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	10.0 U	NS	25.0 U	100.0 U	3.0 U	89,000	15.0 U	NS	NS	40.0 U	8,090	6.0	10.0 U	124,000	NS	50 ป	20.0 U
The state of the same were districted in the same of t		6-Feb-96 UF	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	23.0	NS	25.0 U	500.0	3.0 U	82,000	46.0	NS	NS	43.0	7,350	10.0	10.0 U	120,000	NS	U	20.0 U
		6-Feb-96 F	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	10.0 U	NS	25.0 U		15.0	91,000	17.0	NS	NS	40.0 U	8,540	9.0	10.0 U	127,000	NS	50 U	20.0 U
		6-Feb-96 UF	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	10.0 U	NS	25.0 U	123.0	6.0	84,000	86.0	NS	NS	43.0	<i>7,7</i> 00	12.0	10.0 U	126,000	NS	50 U	20.0 U
		4-Nov-96 * F	45.3 B	60.0 U	2.0 B	79.7 B	NS	NS	NS	4.1 B	NS	3.6 B	24.7 B	5.0 U	87,900	3.1 B	NS	NS	40.0 U	8,880	9.8	10.0 U	121,000	NS	4.9 B	7.2 B
		26-Mar-97 * F	16.0 B	60.0 U	10.0 U	73.3 B	NS	NS	NS	2.4 B	NS	8.2 B	58.7 B	5.0 U	87,600	2.4 B	NS	NS	4.9 B	10,000	11.8	10.0 U	120,000	NS	7.3 B	6.9 B
HI		1-Jul-97 * F	40.6 B	2.8 B	1.4 U	76.4 B	NS	NS	NS	0.9 B	NS	3.7 B	34.4 B	0.8 U	93,900	2.6 B	NS	NS	6.1 B	10,500	14.9	0.7 U	132,000	NS	7.6 B	12.3 B
		28-Oct-97 * F	15.8 U	1.6 U	2.1 U	71.6 B	NS	NS	NS	0.3 U	NS	2.8 B	4.2 U	1.0 U	88,500	1.5 B	NS	NS	5.8 B	10,000 E	12.1	0.7 U	126,000	NS	7.4 B	6.5 B
		28-Oct-97 * F	17.6 B	1.6 U	2.1 U	72.3 B	NS	NS	NS	0.3 U	NS	3.8 B	11.3 B	1.0 U	88,300	1.7 B	NS	NS	5.3 B	10,100 E	13.4	0.7 U	128,000	NS	7.5 B	6.4 B
		21-Jun-00 * F	20.8 U	2.2 B	2.0 B	71.7 B	NS	NS	NS	1.2 J	NS	1.5 U	2.5 U	0.7 U	89,400	1.3 U	NS	NS	0.9 ט	10,400 J	15.1	0.3 U	121,000	NS	7.4 B	3.3 B
		25-Sep-01 * F	30.7 U	2.2 U	1.5 U	69.4 B	NS	NS	NS	2.4 B	NS	1.6 U	57.2 U	0.8 U	83,600	5.7 B	NS	NS	6.1 B	9,900	13.8	0.3 U	114,000	NS	7.6 B	10.1 B
		23-Sep-02 * F	21.2 J	2.2 J	10.0 U	73.9 J	NS	NS	NS	0.74 }	NS	1.9 J	37.4 U	3.0 U	84,200	4.1 J	NS	NS	7.0 J	9,570	17.4	10.0 U	111,000	NS	7.3 J	15.8 J
02_DGMW61	100	14-Dec-92 F	31.0 U	12.1 U	0.7 B	40.3 BE	NS	NS	NS	3.7 U	NS	0.9 U	4.1 B	0.6 U	22,600 E	115.0	NS	NS	7.7 U	4,390 B	4.4 B	2.1 U	57,900 E	NS	4.8 B	2.2 U
		22-Jun-93 F	12.3 B	9.0 U	0.6 B	32.4 BE		NS	NS	2.9 U	NS	0.7 U	71.1 B	0.4 U	22,800	90.0	NS	NS	7.1 U	3,710 B	10.5 N*	1.2 U	57,800	NS	1.7 U	3.2 B
		16-Aug-95 F	12.2 U	2.4 U	2.1 U	42.3 B	NS	NS	NS	1.3 U	NS	1.1 U	24.2 UJ	1.7 U	28,900	62.9 J	NS	NS	1.6 U	4,730 B	53.1	1.5 U	65,300	NS	1.3 B	1.3 B
		29-Nov-95 F	22.6 U	2.2 U	3.3 U	39.8 B	NS	NS	NS	0.6 B	NS	0.7 U	21.6 B	1.5 U	30,100	20.2	NS	NS	1.0 B	4,300 B	95.5	0.8 U	67,400	NS	1.1 U	2.9 U
	1	8-Feb-96 F	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	10.0 U	NS	25.0 U	100.0 U	3.0 U	30,000	15.0 U	NS	NS	40.0 U	3,510 J	57.0	10.0 U	60,000	NS	50 U	20.0 U
	1	8-Feb-96 UF	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	10.0 U	NS	25.0 U	100.0 U	3.0 U	30,000	15.0 U	NS	NS	40.0 U	3,570 J	46.0	10.0 U	61,000	NS	50 ป	20.0 U
		4-Nov-96 * F	53.2 B	60.0 U	3.2 B	49.5 B	NS	NS	NS	4.1 B	NS	3.4 B	100.0 U	5.0 U	28,900	3.0 B	NS	NS	40.0 U	3,870 B	34.3	10.0 U	61,600	NS	50 U	8.6 B
		26-Mar-97 * F	20.7 B	60.0 U	1.8 B	39.5 B	NS	NS	NS	2.2 B	NS	8.3 B	100.0 U	5.0 U	27,100	2.1 B	NS	NS	1.7 B		36.8	10.0 U	59,300	NS	50 U	6.1 B
		2-Jul-97 * F	14.8 B	3.2 B	1.4 U	45.0 B	NS	NS	NS	3.4 B	NS	3.0 B	26.3 B	0.8 ปี	31,600	8.0 B	NS	NS	1.8 B		37.1	0.7 U	69,900	NS	1 U	13.6 B
		28-Oct-97 * F	15.8 U	1.6 U	2.1 U	44.2 B	NS	NS	NS	2.5 B	NS	3.2 B	4.2 U	1.0 U	30,600	0.6 B	NS	NS	2.1 B			0.7 U	70,500	NS	1.0 B	6.9 B
		25-Sep-01 * F	38.2 U	5.0 U	1.5 U	40.9 B	NS	NS	NS	5.5 B	NS	2.0 U	63.4 U	0.8 U	27,700	4.9 B	NS	NS	33.3 B		44.8	0.3 U	67,200	NS	0.86 B	12.1 B
		23-Sep-02 * F	16.2 J	60.0 U	10.0 U	36.5 J	NS	NS	NS	2.0 J	NS	3.2 J	15.1 U	3.0 U	22,500	2.6 J	NS	NS	14.8 J	2,910 J	45.5	10.0 U	52,300	NS	0.93 J	8.0 J
	95	21-Dec-95 F	11.3 U	2.5 U	3.4 B	77.8 B	NS	NS	NS	1.7 B	NS	2.7 B	30.3 B	1.6 U	45,700	14.2 B	NS	NS	6.5 B	2,270 B	7.8	0.7 U	89,200	NS	14.3 B	3.5 B
V2.112.772		26-Nov-96 * F	27.4 B	60.0 U	3.5 B	67.1 B	NS	NS	NS	1.7 B	NS	3.8 B	50.5 B	1.5 B	33,600	6.8 B	NS	NS	12.9 B	1,730 B	5.9	10.0 U	76,400	NS	13.8 B	12.9 B
		26-Mar-97 * F	35.8 B	60.0 U	3.2 B	78.6 B	NS	NS	NS	1.3 B	NS	9.8 B	24.2 B	5.0 U	37,500	3.0 B	NS	NS	8.4 B	1,900 B	8.9	10.0 U	82,900	NS	12.9 B	10.0 B
		3-Jul-97 * F	15.5 B	1.3 U	2.3 B	75.0 B	NS	NS	NS	1.8 B	NS	2.1 B	6.9 B	0.8 U	37,100	1.0 U	NS	NS	8.1 B	1,800 B	12.2	0.7 U	87,700	NS	14 B	10.2 B

			A1.,	Antimore	Arsenic	Ragino	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	ιlz
Station ID	Base Screen Depth	Sample Date - Type	Aluminum 50	Anumony 6	10	2000	d 4	5	NE	100	NE	1000	300	15	NE	50	2	NE	100	NE	50	100	NE	2	NE	500
	(ft bgs)		22.4.11	160	42 D	77 7 D	NC	NS	NIC	228	NS NS	5.7 B	14.0 U	1.2 B	34,500	2.8 B	NS	NS	8.7 B	1,800 B	13.4	0.7 U	81,600	NS	14.7 B	1 1
2NEW2 (cont.)	95	28-Oct-97 * F	33.4 U	1.5 B	4.1 B 5.0 B	71.7 B 66.0 B	NS NS	NS NS	NS NS	2.3 B 1.3 J	NS NS	1.5 U	2.5 U	0.7 U	31,600	1.7 U	NS	NS	1.8 U	1,700 J	18.8	0.3 U	76,300	NS	14.5 B	5
		20-Jun-00 * F	22.6 U	3.2 B	3.6 B	69.3 B	NS NS	NS	NS	1.8 B	NS	1.6 U	51.2 U	0.8 U	32,600	4.8 B	NS	NS	1.4 U	1,760 B	21.2	0.3 U	75,400	NS	15.1 B	
		25-Sep-01 * F	35.7 U	6.5 U 60.0 U	10.0 U	73.6 J	NS	NS	NS	0.71 J	NS	2.4 J	39.0 U	3.0 U	32,600	0.75 J	NS	NS	1.4 U	1,580 J	21.5	10.0 U	71,200	NS	14.3 J	
		23-Sep-02 * F	29.2 J	4.3 U	1.8 U	80.5 J	NS NS	NS	NS	3.4 J	NS	5.1 U	27.2 U	5.0	35,000	1.9 U	NS	NS	1.7 U	1,720 J	21.1	1.3 U	77,100	NS	14.2 J	30.0000
		29-Sep-03 * F 21-Sep-04 * F	37.5 J 10.0 U	2.2 U	11.4 U	90.0 B	NS NS	NS	NS	8.1 B	NS	1.7 U	52.5 B	0.9 U	37,100	1.9 U	NS	NS	5.2 U	1,690 B	14.1 J	0.8 U	73,300	NS	14.6 B	
		21-Sep-05 * F	25.0 U	60.0 U	5.6 J	96.8 J	5.0 U	5.0 U	157,000	1.3 U	50 U	1.1 U	3.0 U	3.0 U	41,100	1.7 U	0.051 UJ	33.3	1.8 U	2,170 J	5.7	10.0 U	84,400	3.6 U	14.4 J	1
and the same of th		22-Mar-06 * F	26.6 J	60.0 U	6.0 U	94.4 J	5.0 U	0.5 บ	160,000	4.0 J	50 U	14.7 J	41.9 J	2.9 U	42,000	1.4 U	0.088 U	32	2.4 J	1,760 J	9.8	10.0 U	90,500	3.7 U	14.4 J	1
		22-17141-00				adas V. sarry V		Aleksa yang a sakang sa kanana a sa									<u> </u>				4001		00 500		40 0 11	1
02NEW7	143	1-Oct-04 F	19.0 U	5.7 U	2.2 B	78.4 B	NS NS	NS	NS	1.7 U		4.0 U	6.5 U	1.2 U	40,400	3.7 U			1.2 U	1,390 J	13.9 J	1.6 U	90,700	10.77	13.7 U	.
A		26-Sep-05 F	20.3 U	60.0 U	10.0 U	90.7 U	5.0 U	5.0 U	155,000	9.2 U	50 U	8.9 U	70.2 U	3.4	40,500	1.2 U	0.2 U	40.4 U	3.0 U	1,730 UJ	14.8 J	1.8 U	74,800	10 U	12.4 U	-
		16-Mar-06 F	27.8 J	60.0 U	7.1 U	79.9 J	5.0 U	5.0 U	155,000	3.0 J	50 U	3.9 UJ	40.4 J	3.0 U	40,400	1.8 UJ	0.096 UJ	41.1	2.1 J	1,930 J	13.6	10.0 U	78,500	10 U	12.6 J	ļ
02NEW8A	104	27-Dec-95 F	11.3 U	2.5 U	2.8 U	17.1 B	NS	NS	NS	2.1 B	NS	1.4 B	24.8 B	1.6 U	24,000	14.0 B	NS	NS	6.5 B	1,990 B	16.4	0.7 U	57,800	NS	5.1 B	
annum and annum and an analysis of the contract of		7-Nov-96 * F	25.8 B	60.0 U	2.1 B	49.3 B	NS	NS	NS	3.2 B	NS	3.3 B	5.9 B	1.1 B	24,100	5.8 B	NS	NS	22.7 B	1,830 B	19.0	10.0 U	57,500	NS	4.3 B	
		25-Mar-97 * F	7.8 B	60.0 U	3.7 B	41.9 B	NS	NS	NS	2.4 B	NS	6.1 B	8.1 B	1.5 B	23,300	2.4 B	NS	NS	6.3 B	1,600 B	17.2	10.0 U	52,100	NS	3.9 B	
		2-Jul-97 * F	38.6 B	5.2 B	2.8 B	40.0 B	NS	NS	NS	2.0 B	NS	- 2.7 B	48.3 B	0.8 U	24,000	7.1 B	NS	NS	24.7 B	1,720 B	16.6	0.7 U	55,900	NS	3.9 B	
		28-Oct-97 * F	33.4 U	1.5 B	2.8 B	35.7 B	NS	NS	NS	1.5 B	NS	2.0 B	14.0 U	1.3 B	24,000	3.6 B	NS	NS	86.0 B	2,320 BE	14.5 U	0.7 U	55,900	NS	3.2 B	.
garage control of the	and and an an an an an an an an an an an an an	25-Sep-01 * F	88.6 B	5.5 U	3.6 B	43.7 B	NS	NS	NS	2.8 B	NS	3.1 U	76.4 B	0.8 U	29,400	5.1 B	NS	NS	0.2 B	1,820 B	23.8	0.3 U	57,300	NS	4.2 B	ļ
		23-Sep-02 * F	26.8 J	2.4 J	10.0 U	45.3 J	NS	NS	NS	3.1 J	NS	1.7 J	40.5 U	3.0 U	28,200	1.1 J	NS	NS	3.7 J	1,610 J	24.8	10.0 U	55,600	NS	4.0 J	١
		23-Sep-03 * F	19.7 U	60.0 U	1.8 J	51.1 J	NS	NS	NS	2.9 J	NS	3.5 U	9.3 U	3.0 U	31,400	2.8 U	NS	NS	1.9 U	1,780 U	17.2	1.2 U	61,400	NS	3.6 J	
		20-Sep-04	26.1 B	4.1 U	8.5 U	55.2 B	NS	NS	NS	5 B	NS	1.7 U	37.7 B	0.9 U	34,100	1 U	NS	NS	2.8 UJ	1,980 B	19.1 J	0.8 U	63,500	NS	3.3 U	
		20-Sep-05 * F	26.6 U	60.0 U	4.0 J	42.5 J	0.12 U	5.0 U	127,000	2.0 J	50 U	0.99 U	26.0 U	3.0 U	26,800	3.9 U	0.02 UJ	10.5 U	1.3 U	1,600 J	8.9	10.0 U	55,700	4 U	4.4 U	
		16-Mar-06 * F	21.8 J	60.0 U	7.3 U	41.9 J	5.00 U	5.0 U	135,000	2.7 J	50 U	1.50 U	22.2 J	3.0 U	27,100	0.66 U	0.075 U	13.2	1.0 J	1,608 J	10.9	10.0 U	56,400	10 U	5 J	ļ
02NEW11	65	21-Dec-95 F	11.8 B	2.5 U	2.8 U	91.4 B	NS	- NS	NS	2.3 B	NS	1.6 B	55.5 B	1.6 U	48,200	43.4	NS	NS	98.2	3,500 B	7.2	0.7 U	101,000	NS	11.3 B	
The special content of the content o		12-Nov-96 * F	45.1 B	60.0 U	4.8 B	82.8 B	NS	NS	NS	3.9 B	NS	2.9 B	45.7 B	1.2 B	29,800	21.8	NS	NS	153	2,380 B	5.0 U	10.0 U	82,000	NS	10.6 B	
S MOREOLOGICA CONTRACTOR AND STREET		25-Mar-97 * F	11.6 B	60.0 U	4.2 B	68.6 B	NS	NS	NS	0.9 B	NS	5.2 B	15.7 B	5.0 U	25,400	19.2	NS	NS	150	2,340 B	5.6	10.0 U	75,200	NS	11.5 B	
STOCKES OF THE STOCKES OF THE STOCKES OF THE STOCKES	A AND DECEMBER OF THE PARTY OF	8-Jul-97 * F	52.2 B	3.8 B	3.3 B	72.5 B	NS	NS	NS	3.8 B	NS	4.3 B	59.0 B	0.8 U	27,000	38.2	NS	NS	272	2,870 B	7.6	0.7 U	83,500	NS	11.8 B	
NO. TO BE AN ALL MANAGES WHILE AND ALL TO CONTRACT		22-Jun-00 * F	198.0 J	2.0 J	4.7 B	292.0 J	NS	NS	NS	1.2 J	NS	1.5 U	271.0 J	0.7 U	30,300 J	13.4 B	NS	NS	191 J	2,570 j	15.6	0.3 U	76,200	NS	12.2 B	
CONTRACTOR AND A CONTRACTOR AND AND AND AND AND AND AND AND AND AND		22-Jun-00 * F	28.5 UJ	1.4 U	3.9 B	84.3 J	NS	NS	· NS	0.8 J	NS	1.5 U	20.6 UJ	0.7 U	29,900 J	12.8 J	NS	NS	187	2,560 J	15.3	0.3 U	75,600	NS	11.5 B	
***************************************	and an arrangement of the control of	25-Sep-01 * F	319.0	3.9 U	3.3 B	80.2 B	NS	NS	NS	4.7 B	NS	12.8 U	78.8 B	2.6 B	27,200	23.1	NS	NS NS	221	2,270 B	10.2	0.3 U	68,800	NS	11.7 B	ļ
or - 40.000 (- 20.00) (- 10.00) (- 10.00) (- 10.00) (- 10.00) (- 10.00) (- 10.00) (- 10.00) (- 10.00)	HAND OF THE PROPERTY OF THE PR	23-Sep-02 * F	19.6 J	2.2 UJ	10.0 U	74.0 J	NS	NS	NS	1.6 J	NS	2.9 UJ	31.5 U	3.0 U	24,700	22.6	NS	NS	186	1,670 J	18.9	10.0 U	57,600	NS	8.4 J	1
5 5 1000-000 - 5 1000-000 - 000-0000 - 000-00000		29-Sep-03 * F	29.0 J	4.6 UJ	4.1 UJ	95.0 J	NS	NS	NS	3.0 J	NS	5.0 U	19.2 U	6.9 J	30,200	10.0 J	NS	NS	169 J	2,450 J	4.7 U	2.0 UJ	82,100	NS	10 J	1
State and the second section of the second s		20-Sep-04 * F	32.6 B	2.3 U	7.0 U	111.0 B	NS	NS	NS	2.7 B	NS	4.0 U	47.4 B	0.9 U	35,100	8.9 U	NS	NS	163 J	3,220 B	2.7 U	0.8 U	90,500	NS	10.6 B	
		20-Sep-05 * F	20.8 U	60.0 U	4.7 J	124.0 J	5.0 U	5.0 U	153,000	1.1 U	0.48 U	1.0 U	13.4 U	3.0 U	46,400	9.0 U	0.36 UJ	11.1 U	131.0	4,380 J	5.0 U	10.0 U	112,000	9 9 9	11.9 J	-
~~~		21-Mar-06 * F	25.0 J	60.0 U	6.6 U	107.0 J	5.0 ับ	5.0 U	147,000	1.8 J	50 U	14.9 J	32.2 J	3.0 U	42,700	9.2 J	0.068 U	7.5	223.0	3,410 J	5.0 U	10.0 U	112,000	3.8 U	9.2 J	
2NEW15	70	22-jun-00 * F	26.0 U	3.7 B	7.9 B	56.6 B	NS	NS	NS	1.0 J	NS	1.5 U	12.1 U	0.7 U	42,800	75.9 U	NS	NS	7.8 U	1,870 J	2.3 B	0.3 U	114,000	NS	11.1 B	Γ
	,,,	25-Sep-01 * F	33.9 UJ	1.5 UJ	4.4 B	55.8 B	NS	NS	NS	15.9 J	NS	1.9 UJ	104.0 J	0.8 U	41,400	50.8	NS	NS	15.9 J	1,730 B	1.7 U	0.3 U	105,000	NS	11.6 B	
		25-Sep-01 * F	107.0 J	5.0 UJ	4.6 B	55.0 B	NS	NS	NS	1.8 J	NS	1.6 UJ	23.9 UJ	0.8 U	42,900	59.1	NS	NS	11.0 J	1,930 B	1.7 U	0.3 U	110,000	NS	12.1 B	-
		23-Sep-02 * F	27.6 J	60.0 U	10.0 U	51.5 J	NS	NS	NS ·	2.1 J	NS	2.1 J	66.2 J	3.0 U	39,400	8.1 J	NS	NS	25.5 J	1,550 J	2.8 J	10.0 U	101,000	NS	12.2 J	
		22-Sep-03 * F	16.9 U	60.0 ป	2.9 J	54.8 J	NS	NS	NS	2.6 J	NS	3.7 U	21.4 U	3.0 U	43,400	14.8 J	NS	NS	35.2 J	1,630 J	5.0 U	1.3 U	108,000	NS	12.7 J	
		22-Sep-04 * F	10.0 U	2.2 U	8.2 U	3.5 U	NS	NS	NS	0.86 B	NS	2.8 U	20.4 U	0.9 U	223 B	0.67 U	NS	NS	1.8 U	2,350 B	2.7 U	0.8 U	547,000	NS	12.9 B	3
		21-Sep-05 * F	37.6 U	60.0 U	5.4 J	43.2 J	5.0 U	5.0 U	131,000	1.8 J	0.46 U	1.9 U	17.3 U	3.0 U	34,600	3.8 U	0.053 UJ	14.7 U	10.6 U	1,730 J	5.0 U	10.0 U	96,500	3.4 U	12.1 J	
		22-Mar-06 * F	28.0 J	60.0 U	6.7 U	59.3 J	5.0 U		175,000	2.7 J	50 U	15.1 J	38.7 J	1.6 U	47,200	39.3	0.065 U	11	24.9 J	2,270 J	5.0 บ	10.0 U	115,000	2.3 U	11.4 J	
						N. 10				70 P	NS	3.5 U	98.4 B	0.8 U	33,700	5.3 B	NS	NS	4.5 B	957 B	14.0	0.3 U	68,600	NS	17.3 B	Г
)2NEW16	65	25-Sep-01 * F	81.0 U	4.3 U	3.1 B	107 B	NS NG	NS NG	NS NS	7.0 B		25.0 U	98.4 B 27.9 J	3.0 U	34,200	0.81 J	NS NS	NS NS	2.9 U	1,000 J		10.0 U	67,400		17.0 J	l
		23-Sep-02 * F	20.1 J	2.7 J	10.0 U	110 J	NS 0.11 II	NS 50 H		1.9 J	NS 042 II		27.9 J 11.0 U	3.0 U	46,700	1.7 U	0.1 UJ	56	1.9 U	1,140 J		10.0 U	77,100		17.0 J	l
2.2.12.12.12.10		21-Sep-05 * F	29.2 U	60.0 U	5.5 J	148.0 J	0.11 U	5.0 U	172,000	2.1 ]	0.42 U	1.8 U		3.0 U	43,900	1.7 U	0.061 U	46.7	40.0 U	1,070 J		10.0 U	83,800	2.1 U	16 J	1
		22-Mar-06 * F	20.6 J	60.0 U	5.1 U	142.0 J	5.00 U	5.0 U	167,000	1.9 ]	50 U	12.5 J	27.6 J	J.U.U	30,700	15.0 0	1 0.001 0	±0./	30.00	2,0,0 )			30,000		, L	i -

	Rasa		Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	n Zi
Station ID	Base Screen Depth (ft bgs)	Sample Date - Type	50	6	10	2000	4	. 5	NE	100	NE	1000	300	15	NE	50	2	NE	100	NE	50	100	NE	2	NE	500
3_DGMW64A	250	17-Sep-01 F	27.3 U	4.5 U	10.0 U	28.5 J	NS	NS	NS	33.9 J	NS	7.4 U	270 J	1.1 J	41,600	46.2	NS	NS	631	5,610 J	13.8	10.0 U	195,000	NS	11.1 J	31.
		25-Sep-02 F	17.3 J	60.0 U	10.0 U	26.9 J	NS	NS	NS	3.5 J	NS	6.5 U	12.7 U	1.4 J	40,800	30.6	NS	NS	368	5,240 J	14.2 U	10.0 U	200,000	NS	10.8 J	624.
		22-Sep-03 F	32.7 J	60.0 U	10.0 U	27.7 J	NS.	NS	NS	3.0 J	NS	6.9 U	34.2 U	1.7 J	41,900	30.1	NS	. NS	580	5,320 J	13.5	0.6 U	204,000	NS	9.7 J	235.
		30-Sep-04	16.3 U	5.8 U	2.1 U	25.1 U	NS	NS	NS	4.7 U	NS	5.5 U	132.0	1.2 U	38,200	21	NS	NS	372	3,660 J	9.6 J	2.1 U	196,000	NS	14 U	213.
147. mga (417.41.1111). 119.41114.1111 (117.1111).		7-Sep-05 F	29.9 U	3.5 U	3.2 J	32.5 J	5.0 ับ	5.0 บ	61,700	12.7	0.68 ป	2.0 U	85.2 U	3.0 U	41,100	12.5 U	0.37	29.8	277.0	4,630 J	6.4	10.0 U	203,000	4.3 U	19.8 J	72.
		15-Mar-06 * F	200.0 U	60.0 U	6.2 U	29.8 J	5.00 U	5.0 บั	61,500	7.4 J	50 U	3.4 U	37.2 J	3.0 U	41,000	11.9 J	0.034 U	28.9	222.0	4,780 J	9.3	10.0 U	197,000	1.9 J	20 J	512.
3_DGMW65X	270	18-Jan-93 F	47.5 B	12.1 U	2.6 B	46.4 B	NS	NS	NS	3.7 U	NS	4.3 B	4.1 B	0.6 U	27,300	238	NS	NS	166	3,850 B	14.7 SN	2.1 U	168,000	NS	13.8 B	3
nere en en en en en en en en en en en en en		7-Jul-93 F	7.8 B	11.7 B	0.7 B	34.7 B	NS	NS	NS	4.4 B	NS	1.2 B	31.1 B	0.4 U	24,400	189	NS	NS	1140	3,550 B	8.1 SN	1.2 U	174,000	NS	8.2 B	1
y magy y y demondry differential describe transport - American estre colorina de de 190	***************************************	26-Feb-96 F	450	60.0 U	11.0	200.0 U	NS	NS	NS	190	NS	25.0 U	5,370	7.0	38,000	55	NS	NS	760	4,280 J	5.0 U	10.0 U	188,000	NS	50 U	71
grave - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940		26-Feb-96 UF	203	60.0 U	10.0 U	200.0 U	NS	NS	NS	150	NS	29.0	3,940	5.0	37,000	130	NS	NS	620	4,130 J	5.0 U	10.0 U	170,000	NS	50 U	44
	angle yet was at the total or the telescope and the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the telescope at the teles	11-Nov-96 F	34.6 B	60.0 U	4.3 B	60.4 B	NS	NS	NS	6.9 B	NS	4.3 B	26 B	1.3 B	37,400	12 B	NS	NS	567	3,470 B	17.4	10.0 U	155,000	NS	18.9 B	21
en en en en en en en en en en en en en e		4-Mar-97 F	18 B	60.0 U	2.7 B	52.3 B	NS	NS	NS	6.4 B	NS	3.7 B	32.5 B	5.0 U	36,100	6.1 B	NS	: NS	532	4,080 B	18.2	10.0 U	164,000	NS	22.5 B	14
	O CONTRACTO MACHINARIO	30-Jun-97 F	34.5 B	3.6 B	1.4 U	47.9 B	NS	NS	NS	10.1	NS	1.8 U	242	0.8 U	34,900	111	NS	: NS	1160	3,950 B	17.1	0.7 U	150,000	NS	10.3 B	1'
in der vertrate der der vertrate in der vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate vertrate		15-Oct-98	200.0 U	2.0 B	2.5 B	52.3 B	NS	NS	NS	7.3 B	NS	5.5 B	46 B	0.8 B	38,900	13.6 B	NS	NS	711	3,740 B	16.8	5.0 U	150,000	NS	17.4 B	24
uninterni versioni proprio proprio sono constituto di estratable di .		19-Jun-00 * F	7.9 UJ	1.4 U	2.4 B	54.0 B	NS	NS	NS	2.7 J	NS	1.5 U	22.6 UJ	0.7 U	33,300	19.7	NS	NS	948 J	4,140 J	10.7	0.3 U	178,000	NS	18.4 U	
		19-Jun-00 * F	34.1 UJ	2.7 J	2.2 B	53.3 B	NS	NS	NS	4.0 J	NS	2.8 UJ	39.6 UJ	0.7 U	32,900	21.4 U	NS	NS	944 J	4,100 J	9.8	0.3 U	175,000	NS	18.2 B	2
DGMW65XA	235	17-Sep-01 F	24.4 U	5.1 U	6.0 J	62.6 J	NS	NS	NS	6.5 J	NS	11.3 U	76.9 J	1.8 J	32,600	13.8 J	NS	NS	134	2,970 J	15.4	10.0 U	194,000	NS	43 J	2
		1-Oct-02 F	31.5 J	3.5 J	6.3 J	61.6 J	NS	NS	NS	4.3 J	NS	11.8 J	68.8 J	2.8 J	33,900	25.1	NS	NS	149 J	3,010 J	18.8	10.0 U	189,000	NS	40.1 J	
		22-Sep-03 F	32.5 J	60.0 U	4.5 J	61.8 J	NS	NS	NS	3.4 J	NS	9.5 U	39.5 U	3.3	34,700	19.7	NS	NS	133	2,840 J	11.7 U	0.4 U	190,000	NS	37.7 J	(
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		29-Sep-04	30.6 U	3.5 U	2.1 U	55.6 B	NS	NS	NS	5.8 B	NS	8.5 U	85.6 B	1.2 U	36,800	17.8 U	NS	NS	212	2,700 J	14.8 J	1.5 U	215,000	NS	34.1 B	21
		7-Sep-05 F	54.9 U	60.0 U	6.6 J	56.6 J	5.00 บ	5.00 U	41,800	7.7 J	0.49 U	4.8 U	57.2 U	3.0 U	32,400	19.6	0.23	23.9	129.0	3,670 J	5.5	10.0 U	222,000	4.4 U	45.9 J	7
		15-Mar-06 * F	25.8 J	60.0 U	9.7 U	64.2 J	5.00 U	5.00 U	48,900	6.0 J	1 U	3.5 U	114.0 J	3.0 U	38,900	45.1	0.11 UJ	29.2	260.0	3,840 J	6.5	10.0 U	227,000	2.9 J	41.8 J	121
3_UGMW26	270	1-Oct-92 F	31.0 U	12.1 U	6.0 B	120.0 B	NS	NS	NS	5.6 B	NS	2.7 B	5.1 B	0.6 U	30,900	20.0	NS	NS	28.5 B	2,110 B	13.3 S	2.1 U	133,000	NS	29.7 B	1
		23-Jun-93 F	22.6 B	12 B	5.0 B	132.0 B	NS	NS	NS	4.3 B	NS	0.7 U	35.9 B	0.4 U	34,000	5.7 B	NS	NS	57.4	2,860 B	12.7 SN	1.2 U	121,000	NS	33.5 B	1
		27-Feb-96 F	200.0 U	60.0 U	12.0	200.0 U	NS	NS	NS	110	NS	25.0 U	1,300	3.0 บ	36,000	17.0	NS	NS	62.0	3,340 J	5.0 U	10.0 U	126,000	NS	50 U	2
	· i · · · · · · · · · · · · · · · · · ·	27-Feb-96 UF	200.0 U	60.0 U	11.0	200.0 U	NS	NS	NS	110	NS	25.0 U	1,300	3.0 U	37,000	32.0	NS	NS	66.0	3,420 J	5.0 U	10.0 U	13,000	NS	50 U	2
		14-Nov-96 F	200.0 U	60.0 U	5.2 B	129.0 B	NS	NS	NS	4.7 B	NS	25.0 U	33.7 B	1.1 B	33,000	6.5 B	NS	NS	62.3	3,060 B	5.1	10.0 U	127,000	NS	33 B	
		19-Nov-96 F	200.0 U	60.0 U	6.8 B	130.0 B	NS	NS	NS	4.6 B	NS	1.8 B	27 B	1.1 B	32,400	5.7 B	NS	NS	58.1	2,990 B	5.5	10.0 U	126,000	NS	33.3 B	
		6-Mar-97 F	11.2 B	60.0 U	4.5 B	106.0 B	NS	NS	NS	11.9	NS	2.4 B	132	5.0 ป	30,200	7.8 B	NS	NS	55.6	2,780 B	11.4	10.0 U	110,000	NS	28.1 B	1
		1-Jul-97 F	73.4 B	4.2 B	3.4 B	122.0 B	NS	NS	NS	7.2 B	NS	5.1 B	96.7 B	0.8 U	36,600	9.9 B	NS	NS	94.2	3,610 B	10.9	0.7 U	134,000	NS	34.5 B	1
		17-Oct-98 F	41.5 B	1.4 U	4.8 B	117.0 B	NS	NS	NS	7.1 B	NS	7.0 B	41.3 B	0.7 ป	35,300	9.3 B	NS	NS	81.1	3,180 B	8.2	0.7 U	124,000	NS	. 32.8 B	2
		19-Jun-00 * F	59.8 U	2.5 B	4.7 B	110.0 B	NS	NS	NS	7.0 J	NS	12.0 B	33.2 U	1.6 B	34,000	19.3 U	NS	NS	251 J	3,420 J	7.9	0.3 U	126,000	NS	28.7 B	2
		20-Sep-01 * F	30.9 U	5.1 U	6.7 J	110.0 J	NS	NS	NS	4.6 }	NS	25.0 U	29.6 U	1.1 U	33,500	21.5	NS	NS	215	3,210 J	7.6 U	10.0 U	128,000	NS	30.2 J	1
TICS CHOCA			20 5 11	£	4011	101 I	NIC	NIC	NC	761	NS	3.5 U	85 J	2.9 Ŭ	33,900	24.7	N5	NS	320	3,230 J	9.9	10.0 U	184,000	NS	37.4 J	4
_UGMW26A	235	20-Sep-01 F	39.5 U	6.6 U	6.0 U	121 J 119 J	NS NS	NS NS	NS NS	7.6 J 26.6	NS NS	6.3 J	486	1.7 J	35,300	17.2	NS	NS	300 J	3,630 J	14.2	10.0 U	190,000	NS	42.3 J	
	<u> </u>	2-Oct-02 F	113 J	4.1 J	8.6 J																					
LDBMW40	260	3-Dec-92 F	69 B	12.1 U	2.7 BW	57.6 B	NS NC	NS NC	NS	3.7 U	NS	0.9 U	34.1 B 51.7 B	0.6 U 0.4 U	50,900 46,500	11.7 B 33.5	NS NS	NS NS	39.4 B 55.9	4,110 B 3,980 B	13.6 BN* 20.2 B	2.1 U 1.2 U	181,000 184,000	NS NS	20.1 B 22.9 B	
Les Campas de Los Grands Alexandes (N. V. Aber	ing the submitted of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	24-Jun-93 F	8 B	12.8 B	1.9 B	52.5 BE		NS	NS NC	2.9 U	NS NC	1.6 B	water water control of the control	A CONTRACTOR OF THE PARTY OF		er er de la companya en	araka ka kemba	COLUMN CONTRACTOR CONTRACTOR MARCONIC	86	4,940 J	10.0	10.0 U	189,000		CONTRACTOR AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STREET, AND STR	e <del>- 100</del> 0 10,0000.0
······································	# 3.705. C#S. 1000/000000###0000**	26-Feb-96 F	1300	60.0 U		200.0 U	NS NS	NS NC	NS	81.0	NS	25.0 U	3600.0	8.0	41,000	120.0	NS NS	NS NC	00 <b>4</b> 040 2000 0 0 0 0 0 0	4,700 J	9.0	COMPRESSOR AND AND AND AND AND AND AND AND AND AND	186,000	NS	51 50 U	210
000		26-Feb-96 UF	900	60.0 U	CONTRACTOR STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE O	200.0 U	NS NC	NS -	NS NC	50.0	NS NG	25.0 U	2000.0	8.0	40,000	110.0	NS	NS NS	79 5 B	4,960 B	5.0	10.0 U 10.0 U	157,000	NS NS	22.8 B	21
e na nanaza za zeromentan eta zero e naza e eta error		12-Nov-96 F	34.9 B	60.0 U	3.5 B	89.7 B	NS NC	NS NC	NS NC	1.9 B	NS NG	1.9 B	100.0 U	5.0 U	63,500	64.8 5 8 B		NS NS	and the same of the same of	Programme in the contract of	20.1	Market Company of the Company	153,000	and the second second	22.6 B	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa
and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	CONTRACTOR NAME OF CONTRACT	5-Mar-97 F	200 U	60.0 U	3.7 B	50.3 B	NS NC	NS NC	NS NC	2.0 B	NS	6.7 B	23.2 B	5.0 U	36,000	5.8 B	NS NC	Control of the second of the second	26.4 B	Maria Maria Barana Barana		10.0 U	CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR	NS NC	THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	
to a structure della state della structura della state della state della state della state della state della s	an a comment of	30-Jun-97 F	30.6 B	3.6 B	2.2 B	82.1 B	NS	NS	NS NC	0.5 U	NS I	1.8 U	36.5 B	0.8 U	65,100	55.2	NS NC	NS NC	9.5 B		12.1	0.7 U	170,000	NS NC	25.5 B	2
ene a na menerona en en en en en en en en en en en en en		16-Oct-97 F	33.4 U	1.4 U	3.3 B	78.9 B	NS	NS	NS NC	2.0 B	NS	5.3 B	14.0 U	0.8 U	56,700	37.7	NS	NS NC	9.6 B	Terminal Control	10.5	0.7 U	168,000	NS	27.8 B	1
e a la face que la defau a del activa describa e en com	ojema, znama a sazz	19-Jun-00 * F	21.1 B	1.8 U	2.0 B	53.7 B	NS	NS	NS NS	2.3 J	NS	1.8 U	30.3 U	0.7 U	46,900	24.3 U	NS	NS NC	and the basis of the first of	ma - 1 - 50	11.8	0.3 U	180,000	NS NC	19.5 B	
	:	20-Sep-01 * F	19.8 U	60.0 U	2.3 U	40.4 J	NS	NS	NS	3.4 J	NS	2.4 U	29.8 U	1.9 U	30,800	19.5	NS	NS	342	5.0/U I I	12.4	10.0 U	169,000	NS	21.9 J	13

		LS AND REGULATOR		,	·		<del></del> .							r							1	T -	1 _	T		Т
Station ID	Base Screen Depth (ft bgs)	Sample Date - Type	Aluminum 50	Antimony 6	Arsenic 10	Barium 2000	Beryllium 4	Cadmium 5	Calcium NE	Chromium 100	Cobalt NE	Copper 1000	Iron 300	Lead 15	Magnesium NE	Manganese 50	Mercury 2	Molybdenum NE	Nickel	Potassium NE	Selenium 50	Silver 100	Sodium	Thallium 2	Vanadium NE	5000
04_DBMW40 (cont.)	260	23-Sep-03 * F	22.5 U	60.0 U	10.0 U	46.2 J	NS	NS	NS	2.9 J	NS	4.8 U	39.9 U	1.5 J	34,400	11.1 J	NS	. NS	240	3,630 J	13.6	1.1 U	169,000	NS	23.3 J	5.4 J
		20-Sep-04	32.1 B	2.2 U	4.6 U	49.1 B	NS	NS	NS	3.7 B	NS	1.7 U	43.0 B	0.9 U	37,000	9.5 U	NS	NS	213 J	3,710 B	12.3 J	0.8 U	172,000	NS	22.3 B	6.9 L
		20-Sep-05 * F	27.9 U	60.0 U	10.0 U	51.1 J	5.0 U	5.0 U	87,400	3.8 J	4.6 U	1.8 U	48.8 U	3.0 U	40,200	19.0	0.027 U	26.3	293.0	4,200 J	5.9	10.0 U	186,000	4.4 U	23.5 J	12.5 J
		17-Mar-06 * F	23.3 J	60.0 U	6.3 U	51.1 J	5.0 U	5.0 U	89,500	5.5 J	4.2 J	3.7 U	46.0 J	3.0 U	42,100	12.3 J	0.027 U	26.1	250.0	4,340 J	9.6	10.0 U	191,000	2.2 J	23.9 J	14.5 J
04_UGMW63	275	24-Nov-92 F	31.3 B	<b>14.7</b> B	0.9 B	76.8 BE	NS	NS	NS	3.7 U	NS	0.9 U	142	0.6 U	67,200	337	NS	NS	17.1 B	3,140 B	8.2 BN	2.1 U	77,400	NS	20.1 B	8.3 E
		25-Jun-93 F	10.5 B	<b>22.0</b> B	2.4 B	96.5 BE	NS	NS	NS	2.9 U	NS	1.0 B	8.2 U	0.4 U	70,600	359	NS	NS	7.1 U	3,380 B	12.2 B	1.2 U	78,600	NS	23.5 B	4.0 E
15.000 · NOV MARIO 18.000 · NOV MARIO 18.000 · NOV MARIO 18.000 · NOV.	and the same and the same and	30-Jan-96 F	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	10.0 U	NS	25.0 U	100 U	5.0	58,000	42	NS	NS	550.0	2,810 J	26.0	10.0 U	88,000	NS NC	50 U	21.0
	and the second second second second second	30-Jan-96 UF	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	18.0	NS	25.0 U	310	3.0 U 2.3 B	55,000 59,100	37 <b>543</b>	NS NS	NS NS	<b>530.0</b> 82.9	2,590 J 3,140 B	7.3	10.0 U	82,000 76,400	NS NS	50 U 20.4 B	22.0 11.0 E
www.www.commonome.commonome.commonome.commonome.commonome.commonome.commonome.commonome.commonome.commonome.co		14-Nov-96 * F	200.0 U	60.0 U	4.1 B	85.7 B	NS NC	NS NS	NS NS	10.0 U 10.0 U	NS NS	25.0 U 1.8 B	100 U 28.4 B	2.3 B	58,500	531	NS NS	NS NS	80.1	3,110 B	7.3	10.0 U	75,900	NS NS	20.1 B	11.3 E
	and the second second	19-Nov-96 * F	33.1 B 17.0 U	60.0 U 2.4 B	3.7 B 3.0 B	86.1 B 83.3 B	NS NS	NS	NS NS	1.5 J	NS	1.5 U	2.5 U	0.7 U	66,500	723 U	NS	NS	29.1 J	3,620 J	9.6	0.3 U	97,700	NS	16.7 B	3.0 B
entro, a com managementa esta esta esta esta esta esta esta es	to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	19-Jun-00 * F 20-Sep-01 * F	25.7 U	6.4 U	3.0 U	91.1 J	NS NS	NS	NS	1.3 J	NS	25.0 U	4.3 J	1.2 J	70,600	839	NS	NS	29.5 J	3,780 J	12.2	10.0 U	107,000	NS	16.4 J	7.3 J
	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th	18-Sep-02 * F	200.0 U	3.9 U	3.7 U	87.2 J	NS	NS	NS	10.0 U	NS	25.0 U	100 U	3.0 U	65,200	691	NS	NS	17.8 J	3,270 J	16.3 U	10.0 U	97,300	NS	16 J	7.3 U
ana and the second consistency and the second consistency and the second con-		23-Sep-03 * F	34.0 J	60.0 U	10.0 U	88.9 J	NS	NS	NS	1.4 U	NS	5.3 U	14.5 U	2.1 J	64,900	684	NS	NS	17.5	3,520 J	16.6	1.7 J	10,600	NS	16.8 J	3.8 J
energyania a prima escribia a can altra altra altra altra anterior della contra della contra della contra della	endine economica anno 1990 i	20-Sep-04 * F	10.0 U	2.2 U	6.8 U	91.8 B	NS	NS	NS	2.4 B	NS	2.4 U	32.5 B	0.9 U	62,300	551	NS	NS	17.4 J	3,410 B	15.5 J	0.8 U	104,000	NS	18.3 B	4.9 U
		19-Sep-05 * F	24.1 U	60.0 U	10.0 U	76.0 J	5.0 U	5.0 U	136,000	3.7 J	2.2 U	0.91 UJ	16.7 UJ	3.0 U	61,000	25.2	0.2 UJ	15.5 U	562.0	3,540 J	18.3	10.0 U	105,000	4.7 U	13.2 J	4.2 L
		15-Mar-06 * F	19.3 J	60.0 U	4.5 U	76.2 J	5.0 U	5.0 U	137,000	3.8 J	2.1 U	5.00 U	29.5 J	3.0 U	62,400	21.3	0.091 U	15.8	664.0	3,820 J	19.9	10.0 U	107,000	3 J	13.9 J	9.3 J
04_DGMW66	290	20-Nov-92 F	31.0 U	12.1 U	2.8 B	41.1 BE	NS	NS	NS .	3.7 U	NS	0.9 U	36.5 B	0.6 U	30,600	16.8	NS	NS	107.0	2,830 B	14.0 BN	2.1 U	112,000	NS	21.2 B	4.2 B
		24-Jun-93 F	8.0 B	9.0 U	3.1 BW	43.6 BE	NS	NS	NS	2.9 U	NS	0.7 U	20.6 B	0.4 U	31,200	4.8 B	NS	· NS	136.0	2,780 B	17.4 B	1.2 U	108,000	NS	18.6 B	2.2 E
		26-Feb-96 F	620.0	60.0 U	10.0 U	200.0 U	NS	NS	NS	547.0	NS	25.0 U	3980	5.0	33,000	24.0	NS	NS NS	110.0	3,600 J	5.0 U	10.0 U	104,000	NS	50 U	62.0
		26-Feb-96 UF	410.0	60.0 U	10.0 U	200.0 U	NS	NS	NS	370.0	NS	28.0	3940	6.0	33,000	53.0	NS NC	NS NC	130.0	3,580 J	5.0 U	10.0 U	105,000	NS NC	50 U 20.6 B	100.0 11.6 B
**************************************		12-Nov-96 F	61.7 B	60.0 U	6.4 B	66.1 B	NS NG	NS	NS	6.7 B	NS NC	4.8 B	33.7 B 17.4 B	2.4 B 5.0 U	31,900 30,400	4.7 B 3.3 B	NS NS	NS NS	121.0 107.0	3,140 B 3,360 B	13.8	10.0 U 10.0 U	103,000	NS NS	18.7 B	6.8 B
		4-Mar-97 F	200.0 U	60.0 U	3.6 B 3.1 B	52.7 B	NS NS	NS NC	NS NS	4.2 B 5.9 B	NS NS	5.0 B 5.7 B	86.2 B	0.8 U	36,400	4.9 B	NS	NS NS	152.0	4,180 B	20.7	0.7 U	132,000	NS	23.2 B	10.9 B
	i	1-Jul-97 F 15-Oct-98 F	53.1 B 200.0 U	2.1 B 60.0 U	3.7 B	64.9 B 51.2 B	NS NS	NS NS	NS	6.0 B	NS	3.4 B	100.0 U	0.9 B	29,900	3.3 B	NS	NS	106.0	3,100 B	14.2	10.0 U	99,300	NS	18.1 B	12.8 B
. 130		20-Sep-01 * F	26.6 U	6.2 U	5.9 U	61.9 J	NS	NS	NS	5.1 U	NS	2.3 U	24.8 U	3.0 U	34,000	6.7 J	NS	NS	69.8	3,500 J	16.4	10.0 U	106,000	NS	18.5 J	13.1 L
04_DGMW66A	230	20-Sep-01 F	25.7 U	8.2 U	1.8 J	113 J	NS	NS	NS	1.7 J	NS	5.2 U	29.3 J	3.0 U	69,200	75.5	NS	NS	29.8 J	6,820 J	5.0 U	10.0 U	199,00	NS	19.9 J	17.9 J
04_DGMW00A		30-Sep-02 F	988	3.4 J	3.9 J	109 J	NS	NS	NS	2.0 U	NS	9.7 J	1,420	3.0 U	59,500	70.6	NS	NS	36.8 J	7,350 J	5.0 U	10.0 U	232,000	NS	24.0 J	333
		25-Sep-03 F	69.6 U	60.0 UJ	1.9 UJ	86.8 J	NS	NS	NS	2.8 J	NS	6.5 U	124.0 UJ	4.2	55,800	38.8	NS	NS	31.2 J	6,890	5.0 U	1.6 U	240,000	NS	21.7 J	52.7 J
		29-Sep-04 F	20.4 U	6.5 U	2.1 U	75.6 B	NS	NS	NS	1.2 U	NS	6.3 U	155.0	1.2 U	53,900	52.1	NS	NS	32.0 B	5,470 J	2.5 U	1.6 U	264,000	NS	20.2 U	407.0
		7-Sep-05 F	28.5 U	60.0 U	3.5 J	79.2 J	5.0 U	5.0 U	75,200	4.2 J	1.1 U	7.1 U	29.6 U	3.0 U	54,200	62.3	0.2 UJ	20.5	111.0	-	5.0 U	10.0 U	270,000	5.3 U	21.5 J	276.0
		16-Mar-06 * F	200.0 U	60.0 U	5.9 U	74.4 J	5.0 U	5.0 U	75,900	4.9 J	1.2 U	3.8 U	142.0	3.0 U	54,900	67.4	0.026 U	18.7	219.0	•	3.5 J	10.0 U	235,000	2.7 J	18.9 J	1690.0
05_DBMW41	222	16-Nov-92 F	31.0 U	12.1 U	1.4 B	22.6 B	NS	NS	NS	3.7 U	NS	0.9 U	14.1 B	0.6 U	29,100	6.5 B	NS	NS		en contract	6.4 BN	2.1 U	99,100	NS	10.5 B	2.4 B
		16-Nov-92 F	31.0 U	12.1 U	1.4 B	22.5 B	NS	NS	NS	3.7 U	NS	0.9 U	17.8 B	0.6 ปั	28,900	6.5 B	NS	NS	at any other course	2,850 B	8.2 BN	2.1 U	96,900	NS	12.2 B	2.4 B
		20-Oct-93 F	23.5 B*	18.8 B	1.9 B	47.6 B	NS	NS	NS	2.8 U	NS	4.5 B	12.8 B	0.5 U	32,000	15.0 U	NS	NS		2,610 B	8.2 B	1.8 U	124,000	NS	11.8 B	2.0 B
		5-Dec-95 F	16.0 U	2.2 U	2.4 B	54.8 B	NS	NS	NS	3.5 J	NS	1.9 B	46.3 J	1.5 U	35,400	1.9 J	NS	NS NC	14.5 J	3,150 B	5.5 J	0.8 U	154,000	NS NC	11.8 B	1.7 U
		7-Feb-96 F	200.0 U	60.0 U		200.0 U	NS	NS	NS	10.0 U	NS	25.0 U	100.0 U	3.0 U	33,000	15.0 U	NS NS	NS NC	40.0 U	2,200 J 2,140 J	6.0	10.0 U 10.0 U	143,000 143,000	NS NS	50 U 50 U	20.0 U
		7-Feb-96 UF	200.0 U	60.0 U		200.0 U	NS NS	NS NS	NS NS	10.0 U 2.7 B	NS NS	25.0 U 3.0 B	100.0 U 100.0 U	3.0 U 1.0 B	33,000 33,200	15.0 U 1.8 B	NS	NS NS	0.000	3,170 B	6.0 4.8 B	10.0 U	141,000	NS	11.2 B	5.8 B
angles consider on expression with the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the season of the seaso	1	13-Nov-96 * F	200.0 U 200.0 U	60.0 U	4.2 B 2.8 B	66.0 B 61.4 B	NS NS	NS NS	NS NS	2.7 B	NS NS	5.5 B	16.4 B	5.0 U	34,100	2.8 B	NS	NS		3,720 B	5.5	10.0 U	142,000	NS	10.6 B	14.9 B
		13-Mar-97 * F 8-Jul-97 * F	11.9 U	4.2 B	1.4 U	58.5 B	NS	NS	NS	1.7 B	NS	2.7 B	25.3 B	0.8 U	34,400	2.5 B	NS	NS		3,200 B	8.6	0.7 U	133,000	NS	10.2 B	10.9 B
		22-Oct-97 * F	200.0 U	1.8 B	2.4 B	63.7 B	NS	. NS	NS	2.0 B	NS	4.5 B	100.0 U	0.8 U	37,000	1.3 B	NS	NS		3,110 B	6.6	10.0 U	137,000	NS	10.4 B	3.3 B
		19-Jun-00 * F	11.3 U	1.7 B	2.5 B	65.8 B	NS	NS	NS	1.3 J	NS	1.5 U	2.5 U	0.7 U	36,000	1.3 U	NS	NS	2.9 Ј	2,980 B	7.0	0.3 U	121,000	NS	9.6 B	2.2 B
05_DBMW41A	185	19-Sep-01 F	24.8 U	5.5 U	3.0 U	65.7 J	NS	NS	NS	2.6 J	NS	2.4 U	9.1 U	2.0 U	35,900	3.5 J	NS	NS	6.2 J	2,860 J	6.3 U	10.0 U	111,000	NS	10.1 J	17.0 U
		30-Sep-02 F	721	2.9 J	10.0 U	68.6 J	NS	NS	NS	6.5 J	NS	7.5 J	866	1.7 J	33,600	11.6 J	NS	NS	14.2 J	2,820 J	9.9	10.0 U	101,000	NS	12.2 J	338
	.,	18-Sep-03 F	39.2 J	60.0 U	10.0 U	62.7 J	NS	NS	NS	2.0 U	NS	3.2 U	28.0 U	1.9 J	34,900	2.2 U	NS	NS	4.1 J	2,550 U	13.2 U	1.0 U	99,800	NS	9.4 J	184.0
		30-Sep-04 F	11.5 U	4.1 U	2.1 U	59.1 B	NS	NS	NS	2.8 U	NS	4.9 U	389.0	1.2 U	34,400	10.8 U	NS	NS	63.0	1,970 J	10.4 J	1.9 U	109,000	NS	9.4 U	306.0

		[				ъ .	n ,	C. J	C-1-1-1	CL	C-11.	Carrie	1	Tana	Magnasius	Manazzzz	Moran	Molyhdon	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
Station ID	Base Screen Depth	Sample Date - Type	Aluminum 50	Antimony 6	Arsenic 10	Barium 2000	Beryllium 4	Cadmium 5	Calcium NE	Chromium 100	Cobalt NE	Copper	Iron 300	Lead 15	Magnesium	Manganese 50	Mercury 2	Molybdenum NE	100	NE	Selenium 50	100	NE	2 1 namum	NE	5000
	(ft bgs)	cample ball Type		,																		1				<u> </u>
5_DBMW41A (cont.)	185	8-Sep-05 F	29.5 U	60.0 U	3.3 J	65.3 J	0.33 U	5.0 <b>U</b>	130,000	3.5 J	50 U	2.6 U	38.9 U	3.0 U	36,800	3.5 U	0.46	40.8	13.5 J	2,950 J	6.3	10.0 U	119,000	3.6 U	10.3 J	57.0
		15-Mar-06 * F	40.6 J	60.0 U	5.1 U	59.1 J	5.00 U	5.0 U	118,000	3.7 J	50 U	4.2 U	43.5 J	3.0 U	33,400	2.5 U	0.11 U	40.6	4.5 J	2,890 J	7.9	10.0 U	111,000	2 J	10.4 J	503.0
05_DGMW67	227	30-Nov-92 F	38.9 B	12.1 U	2.6 B	68.5 B	NS	NS	NS	3.7 U	NS	0.9 U	2.3 U	0.6 U	36,100	1.5 B	NS	NS NS	7.7 U	1,960 B	6.4	2.1 U	127,000	NS	13.2 B	2.2 U
		30-Nov-92 F	50.7 B	12.1 U	2.3 B	69.6 B	NS	NS	NS	3.7 U	NS	0.9 U	2.3 U	0.6 U	36,700	2.3 B	NS	NS	7.7 U	2,090 B	6.3	2.1 U	128,000	NS	14.0 B	2.2 U
-41100 (000 cm cm cm cm cm cm cm cm cm cm cm cm cm		3-Jun-93 F	30.4 B	18.6 B	4.4 BW1	62.2 B	NS	NS	NS	2.9 U	NS	2.1 B	13.6 B	0.4 U	35,400	1.6 B	NS	NS	13.0 B	2,400 B	8.7 B	1.8 B	117,000	NS	14.6 B	2.7 B
nga ngangang sanggan ang managan ang m		6-Dec-95 F	9.9 U	2.2 U	2.2 B	71.4 B	NS	NS	NS	0.6 ]	NS	0.7 U	18.5 UJ	1.5 U	43,400	0.5 J	NS	NS NS	4.7 J	2,290 B	3.7 UJ	0.8 U	116,000	NS NC	10.0 B	1.7 UJ
		9-Feb-96 F	200.0 U	60.0 U		200.0 U	NS	NS	NS	10.0 U	NS	25.0 U	100.0 U	3.0 U	43,000	15.0 U	NS NC	NS NC	40.0 U	1 040 T	5.0 U 5.0 U	10.0 U 10.0 U	116,000	NS NS	50 U	20.0 U 20.0 U
		9-Feb-96 UF	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	10.0 U	NS NC	25.0 U	100.0 U	3.0 U	44,000	15.0 U 4.9 B	NS NS	NS NS	40.0 U 21.4 B	1,960 J 2,500 B	2.9 B	10.0 U	115,000	NS NS	9.5 B	6.3 B
		13-Nov-96 * F	244.0	3.1 B	4.4 B	86.4 B	NS NC	NS NC	NS NC	1.2 B	NS NS	25.0 U 3.5 B	69.5 B	1.6 B 5.0 U	42,400 39,000	5.1 B	NS NS	NS NS	18.7 B	2,700 B	4.4 B	10.0 U	110,000	NS NS	8.2 B	7.9 B
graph management of the contract of the con		14-Mar-97 * F	200.0 U	60.0 U	2.7 B	66.8 B	NS NC	NS NC	NS NS	2.6 B	NS NS	1.5 U	19.8 B 7.9 U	0.7 U	40,100	1.4 U	NS NS	NS NS	4.2 U]	2,530 J	6.8	0.3 U	107,000	NS	9.5 B	7.9 B
		20-Jun-00 * F	22.3 U	1.6 B	3.4 B	64.8 B	NS	NS	No	1.3	143	1.5 0	7.70	0.7 0		1.30									,	
05_DBMW67A	190	19-Sep-01 F	28.7 U	3.8 U	2.8 U	49.1 J	NS	NS	NS	11.2	NS	2.6 U	41.7 U	1.8 U	38,400	4.8 J	NS	NS	12.4 J	3,210 J	7.5 U	10.0 U	114,000	NS	11.7 J	15.1 U
	i don and and and and and and and and and an	30-Sep-02 F	200 U	2.7 J	10.0 U	53.3 J	NS	NS	NS	1.1 U	NS	4.5 J	26.1 U	1.2 J	37,100	11.2 J	NS	NS	30.7 J	3,230 J	8.8	10.0 U	113,000	NS	12.9 J	366
	i : : :	25-Sep-03 F	24.4 J	2.7 U	3.0 U	40.9 J	NS	NS	NS	6.6 U	NS	4.6 U	110.0 U	2.4 J	33,900	5.9 J	NS	NS	181.0 J	3,110 J	10.9	2.0 U	113,000	NS	11.2 J	112.0 J
NAMES OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P		30-Sep-04 F	24.3 U	3.1 UJ	2.1 U	35.5 U	NS	NS	NS	3.8 U	NS	3.1 UJ	67.2 J	1.2 U	33,400	12.7 U	NS	NS	318.0	2,490 J	9.3 J	1.3 U	122,000	NS	8.8 U	225.0
AND AND AND AND AND AND AND AND AND AND		20-Sep-05 F	21.4 U	60.0 U	3.3 J	61.1 J	5.0 U	5.0 U	142,000	2.0 J	50 U	25.0 U	89.2 U	3.0 U	39,600	1.7 U	0.076 U	26.9	3.1 U	2,460 J	5.8	10.0 U	10,800	4.1 U	11.4 J	8.2 U
ikanowana kana wa saka na katawa 1920 a na matawa na 1990 a na	one a comment of a second	17-Mar-06 * F	200.0 U	60.0 U	5.3 U	51.6 J	5.0 U	5.0 U	124,000	3.2 J	50 U	2.1 U	18.9 J	3.0 U	34,500	0.6 U	0.032 U	24.5	2.2 J	2,550 J	7.7	10.0 U	94,100	10 U	10 J	2.1 J
05_DGMW68	210	17-Dec-92 F	31.0 U	20.8 B	1.6 B	29.2 B	NS	NS	NS	3.7 U	NS	1.2 B	17.7 B	0.6 U	33,700	20.6	NS	NS	29.2 B	3,350 B	8.5 S	2.5 B	122,000	NS	13.6 B	2.2 U
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		25-Jun-93 F	12.0 B	18.1 B	1.1 B	31.2 BE	NS	NS	NS	3.0 B	NS	0.7 U	33.4 B	0.4 U	35,800	5.1 B	NS	NS	138.0	3,400 B	9.4 B	1.2 U	120,000	NS	12.5 B	2.6 B
	\$	9-Jan-96 F	15.2 B	2.5 U	2.8 U	24.7 B	NS	NS	NS	2.7 B	NS	1.0 U	40.7 U	1.6 U	35,100	9.2 B	NS	NS	86.8	3,220 B	9.8 U	0.7 U	114,000	NS	9.6 B	73.5
	ļ	27-Feb-96 F	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	40.0	NS	25.0 U	210.0	3.0 U	42,000	15.0 U	NS	NS	110.0	4,010 J	5.0 U	10.0 U	125,000	NS	50 U	19.0 J
		27-Feb-96 UF	200.0 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	263.0	NS	25.0 U	2630.0	3.0 U	42,000	37.0	NS	NS	130.0	4,050 J	5.0 U	10.0 U	126,000	NS	50 U	45.0
		15-Nov-96 F	12.6 B	60.0 U	10.0 U	30.4 B	NS	NS	NS	2.5 B	NS	3.0 B	29.0 B	1.8 B	36,500	3.0 B	NS	NS	68.6	3,650 B	5.2	10.0 U	119,000	NS	11.6 B	5.1 B
		5-Mar-97 F	6.7 B	60.0 U	2.9 B	28.9 B	NS	NS	NS	1.6 B	NS	3.6 B	17.3 B	5.0 U	38,200	1.8 B	NS	NS	54.5	3,840 B	6.4	10.0 U	119,000	NS	11.3 B	12.7 B
	] X	1-Jul-97 F	78.5 B	3.9 B	1.4 U	33.9 B	NS	NS	NS	2.1 B	NS	3.4 B	62.5 B	0.8 U	45,000	4.0 B	NS	NS	65.7	4,620 B	8.6	0.7 U	141,000	NS	13.8 B	15.5 B
	) 	17-Oct-98 F	33.4 U	1.4 U	1.8 B	30.0 B	NS	NS	NS	2.6 B	NS	4.5 B	14.0 U	0.8 U	39,900	2.2 B	NS	NS	63.6	3,660 B	5.3	0.7 U	120,000	NS	11.7 B	12.2 B
		20-Jun-00 * F	33.5 U	1.4 U	1.6 B	29.0 B	NS	NS	NS	5.1 J	NS	1.5 U	19.3 U	0.7 U	33,600	8.8 B	NS	NS	253.0	3,460 B	9.4	0.3 U	84,400	NS	11.1 B	6.0 B
05 DGMW68A	186	20-Sep-01 F	28.3 U	6.2 U	3.5 U	25.3 B	NS	NS	NS	1.9 B	NS	2.3 U	9.0 U	2.2 U	36,300	3.7 B	NS	NS	6.5 U	3,340 J	5.7 U	0.3 U	117,000	NS	11.7 B	37.7
		27-Sep-02 F	200.0 U	60.0 ป	10.0 U	32.5 J	NS	NS	NS	2.3 U	NS	6.3 J	54.4 U	3.0 U	34,100	4.6 Ü	NS	NS	11.8 J	3,040 J	6.7 U	10.0 U	110,000	NS	12.1 J	317
		18-Sep-03 F	20.9 U	2.7 J	10.0 U	24.1 J	NS	NS	NS	25.3	NS	3.3 U	130.0	2.0 J	34,200	6.1 J	NS	NS	27.6 J	2,930 J	11.1 U	0.9 U	107,000	NS	11.2 J	267.0
		30-Sep-04 F	51.0 U	5.7 U	2.1 U	24.2 U	NS	NS	NS	6 B	NS	3.0 U	66.4 B	1.2 U	33,300	5.7 U	NS	NS	11.5 U	2,310 J	7.8 J	2.8 U	114,000	NS	12 U	214.0
		8-Sep-05 F	34.7 U	60.0 U	10.0 U	28.0 U	5.0 U	5.0 U	129,000	3.0 J	50 U	2.6 U	21.6 U	3.0 U	36,600	3.3 U	0.35	37.2	14.0 J	3,320 J	9.4	10.0 U	112,000	3.1 U	12.1 J	79.7
		16-Mar-06 * F	32.4 J	60.0 U	4.6 U	24.7 J	5.0 U	5.0 U	118,000	3.8 J	50 U	9.1 J	51.8 J	3.0 U	33,100	5.2 J	0.089 U	36.6	6.1 J	3,150 J	9.0	10.0 U	102,000	10 U	11.4 J	705.0
05NEW1	203	28-Dec-95 F	11.3 U	2.5 U	2.8 U	91.2 B	NS	NS	NS	7.0 B	NS	1.8 B	145.0	1.6 U	31,400	65.1	NS	NS	201	3,740 B	9.8	0.7 U	102,000	NS	9.8 B	5.0 ป
		13-Nov-96 * F	28.5 B	60.0 U	2.4 B	136.0 B	NS	NS	NS	4.8 B	NS	2.6 B	39.7 B	0.7 B	33,500	73.6	NS	NS	444	3,600 B	6.4	10.0 U	103,000	NS	9.4 B	6.7 B
		13-Mar-97 * F	200.0 U	60.0 U	10.0 U	109.0 B	NS	NS	NS	9.3 B	NS	13.1 B	60.6 B	5.0 U	29,500	67.5	NS	NS	414	3,600 B	8.8	10.0 U	95,400	NS	6.4 B	7.4 B
		9-Jul-97 * F	14.2 B	1.3 U		121.0 B	NS	NS	NS	7.0 B	NS	1.8 U	25.7 B	0.8 U	34,200	83.9	NS	NS	562	3,310 B	11	0.7 U	102,000	NS	7.1 B	16.3 B
		9-Jul-97 * F	18.8 B	2.4 B	1.4 U	125.0 B	NS	NS	NS	7.1 B	NS	2.0 B	27.4 B	0.8 U	35,000	87.6	NS	NS	586	3,360 B	12.4	0.7 U	107,000	NS	7.4 B	14.7 B
	:	22-Oct-97 * F	33.4 U	1.4 U	1.2 U	124.0 B	NS	NS	NS	8.8 B	NS	4.5 B	14.0 U	1.4 B	34,900	107	NS	NS	693	3,520 B	7.8	0.7 U	103,000	NS	5.8 B	6.2 B
		19-Jun-00 * F	109.0 B	2.1 B	1.0 B	134.0 B	NS	NS	NS ·	8.2 J	NS	4.4 U	123.0 U	0.7 U	37,400	59.2 U	NS	NS	501	3,950 B	8.6	0.3 U	113,000	NS	8.0 B	9.1 B
		19-Sep-01 * F	37.5 U	6.0 U	2.4 U	130 J	NS	NS	NS	9.6 J	NS	25.0 U	47.3 U	1.3 U	36,600	40.3	NS	NS	383	3,860 J	7.5 U	10.0 U	111,000	NS	8.9 J	9.6 U
		19-Sep-02 * F	200 U	4.0 U	10.0 U	131 J	NS	NS	NS	4.2 J	NS	25.0 U	9.4 U	3.0 U	36,400	23.9	NS	NS	227	3,390 J	11.5 U	10.0 U	105,000	NS	9.5 U	4.0 J
		17-Sep-03 * F	36.3 J	60.0 U	10.0 U	130.0 J	NS	NS	NS	6.8 J	NS	5.1 U	66.5 U	1.1 J	35,500	33.5	NS	NS	274	3,370 J	9.6 U	1.2 U	107,000	NS	9.8 J	20.2
		16-Sep-04 * F	14.6 B	2.2 U	7.9 U	128.0 B	NS	NS:	NS	4.8 B	NS	3.3 U	58.7 B	0.9 U	33,700	24.5	NS	NS	190 J	3,200 B	3.6 J	0.8 U	101,000	NS	10.6 B	9.9 U
		23-Sep-05 * F	24.0 U	60.0 U	4.1 J	148.0 J	5.0 ປ	5.0 U	149,000	5.7 J	0.54 UJ	1.5 UJ	23.0 UJ	3.0 U	42,200	13.5 J	0.2 UJ	65.2	115.0	3,630 J	9.4 J	10.0 U	127,000	6.4 UJ		1.3 UJ
		17-Mar-06 * F	200.0 U	60.0 U	8.8 U	118.0 J	5.0 U	5.0 U	121,000	4.8 J	50 U	1.4 U	22.1 J	1.2 J	34,100	7.3 J	0.036 U	49.3	75.2	3,860 J	10.2	10.0 U	103,000	4.8 J	11.2 J	3.7 J

	Base			Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
Station ID	Screen Depth (ft bgs)	Sample Date	- Туре	. 50	6	10	2000	. 4	5	NE	100	NE	1000	300	15	NE	50	2	NE	100	NE	50	100	NE	2	NE	5000
05-UGMW27A	190	24-Sep-01	F	51.6 J	4.8 J	2.1 J	87.6 J	NS	NS	NS	2.8 J	NS	4.4 J	50.1 J	3.0 U	31,900	7.0 J	NS	NS	3.9 J	2,500 J	7.7	10.0 U	118,000	NS	11.7 J	30.2
***************************************		26-Sep-02	F	21.2 UJ	60.0 U	10.0 U	102 J	NS	NS	NS	2.5 J	NS	6.2 U	38.1 UJ	3.0 U	35,400	4.3 U	NS	NS	7.2 ]	2,560 J	10.5 UJ	10.0 U	132,000	NS	12.0 J	793
17_DGMW82	255	8-Feb-93	E	40.5 B	12.1 U	5.6 B	30.8 BE	NS	NS	NS	3.7 U	NS	3.8 B	2.3 U	0.6 U	32,400	51.3 U	NS	NS	7.7 U	5,830	<u> </u>	2.1 U	124,000	NS	31.4	31.4
17_DGWIVV82		3-Jun-93	F	21.8 B	9.0 U	6.1 BW1		NS NS	NS	NS	2.9 U	NS	0.7 U	9.0 B	0.4 U	32,600	115 U	NS	NS	7.1 U	5,710	7.0 U	1.2 U	139,000	NS	3.7 B	3.7 I
		3-Jun-93	F	13.6 B	9.0 U	5.7 BN	25.8 B	NS	NS	NS	2.9 U	NS	0.7 U	8.2 U	0.4 U	33,200	126 B	NS	NS	10.1 B	5,830	7.0 U	1.2 U	135,000	NS	3.5 B	3.5 E
		6-Dec-95	F	14.1 U	2.2 U	5.0 B	23.4 B	NS	NS	NS	0.9 J	NS	0.7 U	89.8 J	1.5 U	25,100	16.4 J	NS	· NS	14.5 J	4,780 B	3.7 ป	0.8 U	146,000	NS	7.3 UJ	7.3 t
		9-Feb-96	F	200 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	10.0 U	NS	25.0 U	100.0 U	3.0 U	26,000	18 U	NS	NS	40.0 U	4,310 J	5.0 U	10.0 U	151,000	NS	40.0	40.0
, g. 1, gg		9-Feb-96	UF	200 U	60.0 U	10.0 U	200.0 U	NS	NS	NS	38.0	NS .	29.0	4,370	29	28,000	15.0 U	NS	NS	51	4,450 J	5.0 U	10.0 U	149,000	NS	120.0	120.0
		20-Nov-96	F	10.2 B	60.0 U	3.4 B	26.0 B	NS	NS	NS	10.0 U	NS	25.0 U	100.0 U	5.0 U	25,100	2.5 B	NS	NS	33.4 B	5,000	5.0 U	10.0 ປ	138,000	NS	22.5	22.5
,	y man Process Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of th	1-Apr-97	F	200 U	60.0 U	9.8 B	35.1 B	NS	.NS	NS	10.0 U	NS	7.8 B	38.2 B	5.0 U	23,100	3.6 B	NS	NS	28.4 B	4,920 B	4.8 B	10.0 U	136,000	NS	32.8	32.8
		20-Sep-01	* F	39.5 U	5.4 U	2.1 U	36.3 J	NS	NS	NS	8.8 J	NS	2.0 U	158	1.5 U	25,700	21.6	NS	NS	845	4,450 J	8.0 U	10.0 U	135,000	NS	6.3 J	37.8
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		19-Sep-02	* F	200 U	6.2 U	4.4 U	38.9 J	NS	NS	NS	11.2	NS	2.8 J	461	3.0 U	27,300	6.8 J	NS	NS	806	4,190 J	11.3 U	10.0 U	127,000	NS	6.4 J	11.9 J
		29-Sep-03	* F	33.3 J	3.1 U	10.0 U	38.2 J	NS	NS	NS	2.6 J	NS	4.2 U	59 U	5.2	27,200	6.3 J	NS	NS	767 J	4,300 J	10.5	1.4 U	124,000	NS	4.8 J	34.4 J
		21-Sep-04	* F	10 U	2.2 U	9.0 U	42.6 B	NS	NS	NS	2.2 B	NS	2.4 U	46.2 B	0.9 U	29,100	5.1 U	NS	NS	708 J	4,410 B	9.1 J	0.8 U	125,000	NS	6.3 U	8.4 (
		22-Sep-05	* F	27.0 U	60.0 U	4.2 J	50.8 J	5.0 U	5.0 U	94,800	2.3 J	5.5 U	1.9 U	42.8 U	3.0 U	31,600	82.7	0.1 UJ	29.4	392.0	4,890 J	5.0 U	10.0 U	134,000	2.9 U	8.1 J	13.0 J
		22-Mar-06	* F	20.2 J	60.0 U	3.6 U	41.5 J	5.0 U	5.0 U	91,100	2.7 J	2.5 J	4.8 J	56.3 J	3.0 U	30,300	16.5	0.056 U	25.5	416.0	4,340 J	10.3	10.0 U	131,000	4.1 U	6.3 J	10.3 J
17NEW1	226	12-Jan-96	F	11.7 B	2.5 U	6.7 B	39 B	NS	NS	NS	2.8 B	NS	1.0 U	41.9 B	1.6 U	23,500	87.7	NS	NS	197	2,870 B	15.1	0.7 U	46,200	NS	17.5 B	4.6 B
		20-Nov-96	* F	10.5 B	2.6 B	3.7 B	107 B	NS	NS	NS	2.4 B	NS	4.4 B	100.0 U	1.2 B	20,800	39.1	NS	NS	1220	1,960 B	5.0 U	10.0 U	43,000	NS	12.3 B	11.3 E
	and in materials and a second second second	24-Mar-97	* F	10.7 B	60.0 U	2.3 B	117 B	NS	NS	NS	4.1 B	NS	2.4 B	30.9 B	5.0 U	19,200	36.6	NS	NS	1140	2,160 B	9.4	10.0 U	38,900	NS	11.4 B	13.2 E
	guage and a second and a second and a second a	22-Jun-00	* F	30.9 U	2.7 B	2.7 B	83.7 B	NS	NS	NS	3.8 J	NS	1.5 U	59.2 U	0.7 U	19,600	13.9 B	NS	NS	917	3,920 B	5.1	0.3 U	54,800	NS	6.6 B	14.1 B
		20-Sep-01	* F	32.2 U	7.7 U	3.4 J	192 J	NS	NS	NS	6.9 J	NS	25.0 U	53.0 U	1.4 U	31,900	27	NS	NS	761	3,140 J	6.6 U	10.0 U	73,600	NS	13.4 J	15.7 U
		19-Sep-02	* F	200 U	3.4 U	3.7 U	205	NS	NS	NS	4.2 J	NS	25.0 U	8.0 U	3.0 U	38,100	22.8	NS	NS	595	AND A COURSE	11.1 U	10.0 U	86,500	NS	14.5 J	13.4 J
		29-Sep-03	* F	46.6 J	4.9 U	1.8 U	110 J	NS	NS	NS	10.8 J	NS	4.3 U	113.0 U	6.0	23,800	20.2	NS	NS NS	810 J	2,800 J	5.2 U	2.0 U	75,800	NS	12.4 J	40.3
00000000000000000000000000000000000000		21-Sep-04	* F	14.1 B	2.2 U	7.7 U	116 B	NS	NS	NS	5.1 B	NS	1.7 U	47.9 B	0.9 U	24,800	16.3	NS	NS	815 J	2,740 B	5.2 J	0.8 U	71,100	NS	12.3 B	8.0 L
	· O DEC SATISMAN MANAGEMENT	22-Sep-05	* F	37.1 U	60.0 U	10.0 U	169.0 J	5.0 U	5.0 U	181,000	4.1 J	1.5 U	0.81 U	6.5 U	3.0 U	48,700	20.2	0.21 UJ	13.6 U	2330.0	3,380 J	7.8	10.0 U	80,200	6.1 U	8.1 J	19.0 J
	İ	20-Mar-06	* F	200.0 U	60.0 U	2.0 U	155.0 J	5.0 U	5.0 U	173,000	4.8 J	50 U	25.00 U	28.6 J	3.0 U	46,400	18.9	0.16 U	9.1	2070.0	3,120 J	8.9	10.0 U	70,600	4.4 U	6.5 J	13.3 J

- 1) Sample type: F = filtered sample, UF = unfiltered sample, NA = sample type not available
- Askerisk (*) next to sample date denotes sample collected using low-flow purging procedure.

  2) Abbreviations: MCAS = Marine Corps Air Station; Data Qualification Flags: J = The associated value is an estimated quantity.
- U = The material was analyzed for, but was not detected above the level of the associated value.

  B = Reported value is less than the contract required detection limit, but greater than the instrument detection limit (IDL). NE = None Established
- Data qualifiers for pre-1996 analytical results are presented herein as reported by previous contractors without accompanying explanation.

  3) Regulatory standards in ug/L are listed at the top of each individual metal column.
- Metals with Federal Maximum Contaminant Level (MCL): antimony, arsenic, beryllium, cadmium, mercury, nickel, selenium, and thallium. Metals with Federal Secondary MCL: aluminum, copper, iron, manganese, and zinc. Metals with State MCL: barium, chromium, and silver.
- USEPA Action Level for lead.
- 4) BOLD Result
- = Result exceeds regulatory standard
- **Bold Station ID**
- = Well Sampled during Round 23

# Table 9 Perchlorate Analyses Former MCAS El Toro, California

Well Completion	Well Type	Screen Interval (feet bgs)	Sampling System	Sample Date	Perchlorate ⁽¹⁾ 24 μg/L ⁽²⁾
Shallow	single	27-57	bladder pump	16-Mar-05	70
	}			20-Sep-05	276
				22-Mar-06	376
	Completion	Completion Type	Completion Well Interval (feet bgs)	Completion Type Interval (feet bgs) Sampling System	Completion   Well   Interval (feet bgs)   Sampling   Sample   Date

#### Notes:

- 1) All concentrations in micrograms per liter (ug/L)
- 2) No State or Federal Maximum Contaminant Level (MCL) has been established for perchlorate as of the date of this report. Per the Navy's latest perchlorate sampling and management policy⁽³⁾, the Department of Defense has established a level of concern for perchlorate of  $24 \,\mu\text{g/L}$ .
- 3) Department of the Navy, Office of the Chief of Naval Operations. 2006. *Navy Perchlorate Sampling and Management Policy*. April 15.

#### Acronyms:

bgs - below ground surface

CDM

Final September 2006

### **FIGURES**

#### SENSITIVE RECORD

### PORTIONS OF THIS RECORD ARE CONSIDERED SENSITIVE AND ARE NOT AVAILABLE FOR PUBLIC VIEWING

#### FIGURES 1 THROUGH 7

FOR ADDITIONAL INFORMATION, CONTACT:

DIANE C. SILVA, RECORDS MANAGER
NAVAL FACILITIES ENGINEERING COMMAND, SOUTHWEST
1220 PACIFIC HIGHWAY
SAN DIEGO, CA 92132

TELEPHONE: (619) 556-1280 E-MAIL: diane.silva@navy.mil

#### **SENSITIVE**







C. Cad \ 6218 \ 084 \ CDM \ FIELD \ PPT23 \ 084 | 69 = 3 dws | 2-1 | 09 \ 25 \ 2006 | 1



C:\cad\6218\084\CDM\FIELD\RPT23\084_fig-4.dwg. 4, 09/25/2006 12:00:09 F



C:\cad\6218\084\CDM\FIELD\RPT23\084_fig-5.dwg, 5, 09/25/2006 12:00:22



C:\cad\6218\084\CDM\FIELD\RPT23\084_fig=6.dwg, 6, 09/25/2006 12:0



C.\cad\6218\084\CDM\FHELD\RPT23\084 fig=7 dwg 7 09/25/2006 12:01:18 F

Appendix A

Quality Assurance/Quality Control Summary

## Appendix A Quality Assurance / Quality Control Summary

The groundwater sampling and analyses activities for the March 2006 sampling Round 23 were performed according to guidance and quality assurance/quality control (QA/QC) procedures described in the amended *Final Sampling and Analysis Plan* (SAP) and the amended *Final Quality Assurance Project Plan* (QAPP) prepared for the Marine Corps Air Station (MCAS) El Toro *Groundwater Monitoring Planning Documents* (CDM 1996) and the *Work Plan Addendum for Groundwater Monitoring MCAS El Toro* (CDM 2000). The collection of field data was performed following the SAP and Standard Operating Procedures (SOPs) provided in the QAPP. The laboratory analyses were performed according to analytical methods, detection limits, and QA/QC procedures described in these documents. This section summarizes the performance of the field and analytical procedures, data quality assessment, and data validation activities.

During the March 2006 sampling round, groundwater samples were collected from a total of 19 monitoring wells. All samples were analyzed for volatile organic compounds (VOCs). Samples from selected monitoring wells were also analyzed for radionuclides, metals, perchlorates, and general chemistry parameters.

During field sampling, the following QA/QC samples were collected and analyzed: two field duplicate samples and one matrix spike (MS)/matrix spike duplicate (MSD) sample. In addition, eight trip blank samples were analyzed for VOCs during Round 23. The results of QC samples are summarized below. Refer to the laboratory reports and the data validation reports in Appendix B for complete results.

### A.1 Deviations from Sampling and Analysis Plan and Quality Assurance Project Plan

No deviations occurred from the above referenced documents for the March 2006 monitoring round.

#### A.2 Quality Control Procedures

Data verification, laboratory QC, and field QC samples used for this project are identified below.

#### A.2.1 Data Verification

Data collected were subjected to the data verification process. Data verification includes proof-reading and editing hard-copy data reports to assure that data correctly represents the analytical measurement. In general, verification identifies nontechnical errors in the data package that can be corrected (e.g., typographical errors). Data



verification also includes verifying the sample identifiers on laboratory reports (hard copy) match those on the chain-of-custody record.

#### A.2.2 Laboratory QC Samples

Laboratory QC samples are used to:

- Verify that procedures, such as sample handling, storage, and preparation, are not introducing variables into the sampling chain that could render the validity of samples questionable; and
- Assess data quality in terms of precision and accuracy.

Quality control samples are regularly prepared in the laboratory so that all phases of the sampling process are monitored. The types of laboratory QC samples prepared during the analysis of water samples from the field activities are discussed below.

#### A.2.2.1 Method Blanks

One method blank was analyzed per batch of samples (not greater than 20 samples). The method blank was processed following the same preparatory and analytical procedures as the field-collected samples. These QC samples were used to detect the presence and magnitude of contaminants or other anomalies resulting from the sample preparation and analytical procedures.

#### A.2.2.2 Matrix Spikes/Matrix Spike Duplicates

At a minimum, one MS/MSD pair was prepared and analyzed for every 20 samples for organic analyses. The MS/MSD samples were prepared by spiking a known amount of certain analytes of interest for each method into a sample of the matrix. The spiked samples were then carried through the same procedures as the unspiked field-collected samples. The percent recoveries of the spiked compounds were used as an indication of the accuracy and appropriateness of the methods for the matrix. The precision of the methods was also assessed by calculating and evaluating the relative percent difference (RPD) between the results of the MS and MSD.

#### A.2.2.3 Surrogates

Surrogate compounds (artificial compounds with similar chemical properties and behavior to the compounds of interest) were added to each sample analyzed for applicable organic analytical methods. The percent recoveries of these spiked surrogate compounds were used to assess the accuracy of sample preparation and analysis procedures.



#### A.2.3 Field QC Samples

Field QC samples were collected to evaluate the ambient sampling conditions, the thoroughness of the decontamination procedures, and the reproducibility of the field sampling techniques.

**Field Duplicate Samples:** During this sampling round, field duplicate samples were collected at two of the nineteen monitoring wells (03_DGMW65XA and 02NEW7). Field duplicate results were reviewed as part of the data validation activity performed during this sampling round. RPDs were within acceptable range for duplicate samples 03_DGMW65XA and 02NEW7; no data qualifications were assigned. For additional information on the duplicate samples, see the data validation case narratives in Appendix B.

**Trip Blank Samples:** Trip blank samples were provided by the subcontract laboratory, Applied Physics and Chemistry Laboratory (APCL), and were included with each sample shipment for VOC analysis. A total of eight trip blanks were analyzed in this sampling round. Contaminants were not detected in any Round 23 trip blank sample; data was not qualified. For additional information on the trip blanks, see the data validation case narratives in Appendix B.

#### A.3 Data Quality Assessment

#### A.3.1 General Data Review

The field and laboratory data collected during the current sampling round have been reviewed according to the criteria described in the QAPP (CDM 1996). The laboratory hard-copy analytical reports and case narratives were reviewed to verify correct sample designation, identification, and chain-of-custody records and to assure that analytical method, holding time, and detection limit requirements were met.

The water level and field parameter measurements collected during Round 23 were reviewed and verified from field sampling records and compared to the field data collected during the prior sampling rounds. Section 3.2.6 provides a discussion of field parameter data.

#### A.3.2 Laboratory Data Validation

The subcontract laboratory, APCL, prepared Level D analytical data packages for all groundwater sample analyses performed. Laboratory Data Consultants performed independent data validation. Data validation was performed following NAVFAC's Environmental Work Instruction #1 (NAVFAC 2001). The data validation guidelines were supplemented by the EPA guidance document for data validation entitled *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review* (EPA 2004), where applicable.

The data validation effort included detailed review of laboratory data packages for selected sample delivery groups (SDGs) for each of the analytical parameters/methods performed. The objectives used to select the SDGs for validation included (1) to confirm and verify new constituent detection or anomalous results; (2) to target SDGs that include field QC sample results (e.g., field duplicates, equipment rinsates) as much as possible; and (3) to select individual SDGs that are representative of the full duration of the sampling round.

The results of the Round 23 data validation are presented in Data Validation Reports (DVRs) included as Appendix B of this report. The DVRs consist of six separate reports for VOCs, four reports for metals, four reports for general chemistry, two reports for gross alpha beta, two reports for TPH as gasoline, two reports for TPH as diesel, and one report for perchlorates.

For the selected sample results reviewed, the project goals for precision, accuracy, representativeness, completeness, and comparability, as defined in the QAPP, were evaluated (CDM 1996). Except as noted below, the data validation indicates that the analytical data obtained during this sampling round are considered to be usable for the intended purposes of monitoring groundwater quality.

A summary of the data validation and qualifications identified in the DVRs are provided below.

#### A.3.2.1 Volatile Organic Compounds

The following are the results of data validation performed for VOCs:

- Initial calibration for all seven SDGs were within acceptable percent relative standard deviation limits. No qualifications were made;
- The continuing calibration was outside of criteria for 1,2-dichloropropane, chloroethane, and 2-butanone in four SDGs; dichlorodifluoromethane in two SDGs; 2-hexane in two SDGs; carbon tetrachloride in three SDGs; disulfide in three SDGs; and trichloroethane, 1,3-dichlorobenzene, and 1-1-dichloroethane in one SDG. This qualified all related detects as estimated ("J") and non-detect estimated value ("UJ") for all non-detects;
- MS/MSD results were within RPD were within QC limits except in one SDG.

The data is considered acceptable for use as it was intended based on the data validation process. Data flags were placed on results where applicable (as described above). In the case where there was more than one result for an individual sample (if dilution was required), the least technically acceptable result was rejected (i.e., the result from the diluted sample except for the analyte that necessitated the sample to be

diluted). Rejecting the duplicate results produced one complete data set for each sample.

#### A.3.2.2 Gross Alpha/Beta

One SDG for gross alpha/beta had detections of alpha in samples, which resulted in associated samples being qualified as estimated (J) results. No data were rejected.

#### A.3.2.3 Metals

Four SDGs for metals analysis were validated. The following summarizes results of the data validation performed for metals:

- No data were rejected;
- Method blanks had contaminants in all four SDGs, which flagged a number of detected analytes as non-detected ("UJ"); and
- Duplicates were not qualified.

#### A.3.2.4 General Chemistry

Wet chemistry data included the following analyses: alkalinity, chloride, nitrate, nitrite, total dissolved solids, sulfide, sulfate, total organic carbon, and phosphorous. No data were rejected. Data was not flagged or qualified.

#### A.3.2.5 Perchlorates

No data were rejected or qualified.

#### A.3.3 Field Parameter Measurements

The groundwater field parameters collected during Round 23 are listed in Table 2. Overall, the field parameters collected are consistent with the expected range of values for groundwater conditions based on previous results at the former MCAS El Toro.

#### A.4 QC Evaluation of the Analytical Data

This section presents the results of the internal evaluation of both field and laboratory QC checks. Data quality is assessed against established data quality objectives. The evaluation of the validated data sets compared the objective versus the actual data results through the use of the precision, accuracy, representativeness, completeness, and comparability (PARCC) parameters. The data quality objectives were met for Round 23.

Precision, accuracy, and completeness goals for the major chemical analyses that were performed on samples collected from the site were those specified in the EPA CLP statement of work (SOW).



#### A.4.1 Precision and Accuracy

The procedures in this section are designed to assess QC data for blanks, duplicates, spikes, and surrogates. The review of these data provides information concerning the precision and accuracy measurements conducted by the laboratories and field procedures.

#### A.4.1.1 Laboratory Method Blanks

Arsenic in four SDGs; Copper in two SDGs; Manganese in three SDGs; Mercury in four SDGs; Thallium in three SDGs; Lead in one SDG; Cadmium in one SDG; Iron in one SDG; and Cobalt in one SDG were detected in the laboratory method blanks. All affected data points have been qualified accordingly during the data validation process.

#### A.4.1.2 Matrix Spikes/Matrix Spike Duplicates

MS/MSD results that were prepared and analyzed by the laboratory were within control limits accept for gross alpha in separate SDGs. All affected data points have been qualified accordingly during the data validation process.

#### A.4.1.3 Surrogates

Surrogate percent recoveries (%R) were within required QC limits; no qualifications were made.

#### A.4.2 Representativeness

Representativeness is the reliability with which a measurement or measurement system reflects the true conditions under investigation (EPA 1989). Representativeness is influenced by the number and location of the sampling points, sampling timing and frequency of monitoring efforts, and the field and laboratory sampling procedures (EPA 1989).

The representativeness of data was enhanced by the use of established field and laboratory procedures and their consistent application. Samples that were collected are considered to be representative of the location of sample collection.

#### A.4.3 Completeness

The completeness of the data is described as a ratio of the amount of data expected from the field program versus the amount of valid data actually received. Valid data are considered to be those data that have not been rejected (were not R-qualified either from data validation or internal data review). Completeness can be expressed by the following equation:

$$C = \frac{\text{(number of valid results)}}{\text{total number of requested results}} \times 100$$

Based on the data validation and internal review, the completeness of the sample set submitted for analysis is 100 percent. This exceeds the completeness goals set for this project.

#### A.4.4 Comparability

Comparability evaluates whether the reported data is comparable with similar data reported by other organizations. The comparability of the laboratory results was found to be acceptable. All samples have been analyzed by the same laboratories, using the complete list of published methods specified in the field sampling plan. All units were consistent and appropriate for the matrix sampled.

Comparability also involves comparing data to previous rounds of sampling at the same locations. Overall, results from Round 23 indicate good comparability to previous rounds.

September 2006

#### A.5 References

- CDM Federal Programs Corporation (CDM). 1996. Amended Final Groundwater Monitoring Planning Documents for MCAS El Toro: Quality Assurance Project Plan, Sampling and Analysis Plan, Data Management Plan, Health and Safety Plan; prepared for NAVFACSW Naval Facilities Engineering Command, October 10, 1996.
- — 2000. Work Plan Addendum for Groundwater Monitoring Data. Marine Corps Air Station El Toro, California. May.
- – 2006. Final Remedial Design for Monitored Natural Attenuation with Institutional
  Controls Operable Unit 3, IRP Site 16, Crash Crew Training Pit No. 2. Former Marine
  Corps Air Station El Toro, California. March.
- Naval Facilities Engineering Facility (NAVFAC) Southwest. 2001. Environmental Work Instruction #1, Data Validation for Chemical Analysis of Environmental Samples.

  November.
- United States Environmental Protection Agency (EPA). 2004. Contract Laboratory
  Program National Functional Guidelines for Organic Data Review, EPA-540/R-94-012,
  February.

### Appendix B

Level D Laboratory Analytical Reports and Level IV Data Validation

### Appendix B Data Validation

This section includes data validation procedures for laboratory data generated from the groundwater sampling effort (Round 23) for groundwater monitoring at the former MCAS El Toro. The purpose of data validation is to assure that the data collected meet the data quality objectives and that the data are of sufficient quality for use for the project objectives. An index for Round 23 laboratory data validation reports is provided in Table B-1.

An independent subcontractor, Laboratory Data Consultants, Inc. performed data validation. One hundred percent of all data collected that was analyzed by a fixed-base analytical laboratory underwent data validation in accordance with Environmental Work Instruction No. 1, Data Validation Guidelines for Chemical Analysis of Environmental Samples (Naval Facilities Engineering Command [NAVFAC] Southwest 2001). Approximately ninety percent of the data sent for validation was subject to medium level validation criteria, and the remaining ten percent was subject to high level sampling and chemical analysis quality assurance requirements.

Data validation is a systematic process used to interpret, define, and document analytical data quality and assess whether the data quality is sufficient to support the intended use(s) of the data. Validation of a data package includes a reconstruction of sample preparation and analysis activities from the raw data and reconciliation of the raw data with the reduced results, identification of data anomalies, and qualification of data to identify data usability limitations.

The Round 23 data validation reports were reviewed and summarized by CDM project personnel to assess data suitability and usability. The results of this internal review are summarized in Appendix A.

Analytical data were qualified based on data validation reviews. For chemical data, qualifiers were assigned in accordance with USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 2004) and USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999). Any data that were assigned an "R" (rejected) qualifier have been deemed "unusable" and as such were not used for any purpose including, but not limited to, data interpretation, tables, and figures. Data may be rejected for noncompliance of method requirements during the course of validation, or as a result of dilutions and re-analyses by the validators in order to yield only one complete set of data for a given sample and eliminate redundant data. The intent of the latter classification is to guide data users in choosing the best analytical result when re-analyses and/or dilutions exist. A "J"

qualifier indicates an estimated concentration, while a "U" qualifier indicates a result is considered undetected. Data with these qualifiers are considered usable.

### Table B-1 Index for Laboratory Data Validation Reports, Round 23 MCAS El Toro

Sample Delivery Group (SDG) No.	Laboratory Data Consultants (LDC) Report No.	Sampling Date	Analytical Category (LDC Designation)	Analytical Category (CDM Designation)		
06-1934	14858	3/28/06	Volatiles	VOCs		
06-1875	14820	3/21-22/06	Volatiles	VOCs		
06-1845	14803	3/20/06	Volatiles	VOCs		
06-1896	14811	3/23/06	Volatiles	VOCs		
06-1826	14798	3/17/06	Volatiles	VOCs		
06-1808	14786	3/15-16/06	Volatiles	VOCs		
06-1875	14820	3/21-22/06	Metals	Metals		
06-1845	14803	3/20/06	Metals	Metals		
06-1826	14798	3/17/06	Metals	Metals		
06-1808	14786	3/15-16/06	Metals	Metals		
06-1875	14820	3/21-22/06	Wet Chemistry	General Chemistry		
06-1845	14803	3/20/06	Wet Chemistry	General Chemistry		
06-1826	14798	3/17/06	Wet Chemistry	General Chemistry		
06-1808	14786	3/15-16/06	Wet Chemistry	General Chemistry		
158637	14993	3/15-22/06	Gross Alpha Beta	Gross Alpha Beta		
159123	14993	3/15-22/06	Gross Alpha Beta	Gross Alpha Beta		
06 1004	14050	0.400.404	TINI C. II			
06-1934	14858	3/28/06	TPH as Gasoline	TPH as Gasoline		
06-1896	14811	3/23/06	TPH as Gasoline	TPH as Gasoline		
06-1934	14858	3/28/06	TPH as Diesel	TPH as Diesel		
06-1896	14811	3/23/06	TPH as Diesel	TPH as Diesel		
06-1808	14786	3/15-16/06	Perchlorates	Perchlorates		

Notes:

MCAS = Marine

Marine Corps Air Station

CDM

CDM Federal Programs Corporation

LDC

Laboratory Data Consultants

No. VOCs Number
 Volatile Organic Compounds

SDG =

Sample Delivery Group Total Petroleum Hydrocarbons This page intentionally left blank



#### LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

April 10, 2006

CDM Federal 9444 Farnham Street, Suite 210 San Diego, CA 92123

ATTN: Mr. Michael Higman

SUBJECT: MCAS El Toro CTO 084, Data Validation

Dear Mr. Higman,

Enclosed is the final validation report and Excel qualification sheet for the fractions listed below. This SDG were received on March 30th, 2006.

#### LDC project# 14786:

SDG#

Fraction

Volatiles (Method CLP SOW OLM04.2)

Metals (Method CLP SOW ILM04.2)

Wet Chemistry (Method EPA 300.0, 310.1, 331.0 and 160.1)

The following deliverables are submitted under this report:

•	Attachment I	Sample ID Cross Reference and Data Review Level
•	Attachment II	Overall Data Qualification Summary
• .	Attachment III	CDM Database Qualification Summary
•	Enclosure I	EPA Level III ADR Outliers (including manual review outliers)
• .	Enclosure II	EPA Level IV DVR (manual review)

The data validation was performed in accordance to the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999 and for Inorganic Data Review, October 2004. Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The following items were evaluated during the review:

- Holding Times
- Sample Preservation
- Cooler Temperatures
- Initial Calibration (Manual Review)
- Continuing Calibration (Manual Review)
- Blanks
- Surrogates
- Internal Standards (Manual Review)
- Matrix Spike/Matrix Spike Duplicates



- Laboratory Control SamplesDetection and Quantitation LimitsField QC Samples

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto

Operations Manager/Senior Chemist

# Attachment I

Sample ID Cross Reference and Data Review Level

### **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
15-Mar-2006	05_DBMW41A-123	06-1808-10	N	3010A	CLP-Metal	111
15-Mar-2006	05_DBMW41A-123	06-1808-10	N	5030B	CLP-VOC	III
15-Mar-2006	05_DBMW41A-123	06-1808-10	N	7470A	CLP-Metal	111
15-Mar-2006	05_DBMW41A-123	06-1808-10RE	N	3010A	CLP-Metal	III.
15-Mar-2006	03_DGMW64A-123	06-1808-5	N	3010A	CLP-Metal	IV
15-Mar-2006	03_DGMW64A-123	06-1808-5	N	5030B	CLP-VOC	IV
15-Mar-2006	03_DGMW64A-123	06-1808-5	N	7470A	CLP-Metal	IV
15-Mar-2006	03_DGMW64A-123	06-1808-5	N	GEN PREP	160.1	IV
15-Mar-2006	03_DGMW64A-123	06-1808-5	<b>N</b>	GEN PREP	300.0	IV
15-Mar-2006	03_DGMW64A-123	06-1808-5	N	GEN PREP	310.1	IV
15-Mar-2006	03_DGMW64A-123DUP	06-1808-5MD	DUP	GEN PREP	310.1	Ш
15-Mar-2006	03_DGMW64A-123	06-1808-5RE	N	3010A	CLP-Metal	IV
15-Mar-2006	03_DGMW65XA-123	06-1808-6	N	3010A	CLP-Metal	Ш
15-Mar-2006	03_DGMW65XA-123	06-1808-6	N	5030B	CLP-VOC	III
15-Mar-2006	03_DGMW65XA-123	06-1808-6	· N	7470A	CLP-Metal	m ,
15-Mar-2006	03_DGMW65XA-123	06-1808-6	N	GEN PREP	160.1	· ·
15-Mar-2006	03_DGMW65XA-123	06-1808-6	N	GEN PREP	300.0	III
15-Mar-2006	03_DGMW65XA-123	06-1808-6	N	GEN PREP	310.1	111
15-Mar-2006	03_DGMW65XA-123	06-1808-6RE	N	3010A	CLP-Metal	111
15-Mar-2006	03_DGMW65XA-323	06-1808-7	FD	3010A	CLP-Metal	ııı.
15-Mar-2006	03_DGMW65XA-323	06-1808-7	FD	5030B	CLP-VOC	III
15-Mar-2006	03_DGMW65XA-323	06-1808-7	FD	7470A	CLP-Metal	111
15-Mar-2006	03_DGMW65XA-323	06-1808-7	FD	GEN PREP	160.1	iii
15-Mar-2006	03_DGMW65XA-323	06-1808-7	FD	GEN PREP	300.0	111
15-Mar-2006	03_DGMW65XA-323	06-1808-7	FD	GEN PREP	310.1	111
15-Mar-2006	03_DGMW65XA-323	06-1808-7RE	FD	3010A	CLP-Metal	111

### **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
16-Mar-2006	01_MW201-123	06-1808-1	N	5030B	CLP-VOC	111
16-Mar-2006	01_MW201-123	06-1808-1	N	GEN PREP	331.0	111
16-Mar-2006	01_MW201-123	06-1808-1	N	GEN PREP	M300.0	in .
16-Mar-2006	05_DGMW68A-123	06-1808-11	N	3010A	CLP-Metal	III
16-Mar-2006	05_DGMW68A-123	06-1808-11	N	5030B	CLP-VOC	<b>E</b> II
16-Mar-2006	05_DGMW68A-123	06-1808-11	N	7470A	CLP-Metal	III
16-Mar-2006	05_DGMW68A-123DUP	06-1808-11MD	DUP	3010A	CLP-Metal	· III
16-Mar-2006	05_DGMW68A-123MS	06-1808-11MS	MS	3010A	CLP-Metal	111
16-Mar-2006	05_DGMW68A-123	06-1808-11RE	N	3010A	CLP-Metal	III
16-Mar-2006	BT1-923	06-1808-12	ТВ	5030B	CLP-VOC	111
16-Mar-2006	01_MW201-123MS	06-1808-1MS	MS	GEN PREP	331.0	·
16-Mar-2006	01_MW201-123MSD	06-1808-1MSD	MSD	GEN PREP	331.0	III
16-Mar-2006	02NEW7-123	06-1808-2	N	3010A	CLP-Metal	III
16-Mar-2006	02NEW7-123	06-1808-2	N	5030B	CLP-VOC	m.
16-Mar-2006	02NEW7-123	06-1808-2	N	7470A	CLP-Metal	. 111
16-Mar-2006	02NEW7-123DUP	06-1808-2MD	DUP	7470A	CLP-Metal	111
16-Mar-2006	02NEW7-123MS	06-1808-2MS	MS	7470A	CLP-Metal	tII,
16-Mar-2006	02NEW7-123	06-1808-2RE	N.	3010A	CLP-Metal	[]]
16-Mar-2006	02NEW7-323	06-1808-3	FD	3010A	CLP-Metal	III
16-Mar-2006	02NEW7-323	06-1808-3	. FD	5030B	CLP-VOC	III >
16-Mar-2006	02NEW7-323	06-1808-3	FD	7470A	CLP-Metal	THI .
16-Mar-2006	02NEW7-323	06-1808-3RE	FD	3010A	CLP-Metal	H
16-Mar-2006	02_NEW8A-123	06-1808-4	N	3010A	CLP-Metal	] 101
16-Mar-2006	02_NEW8A-123	06-1808-4	N	5030B	CLP-VOC	111
16-Mar-2006	02_NEW8A-123	06-1808-4	N	7470A	CLP-Metal	m
16-Mar-2006	02_NEW8A-123	06-1808-4RE	N	3010A	CLP-Metal	111

### Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
16-Mar-2006	04_DGMW66A-123	06-1808-8	N	3010A	CLP-Metal	111
16-Mar-2006	04_DGMW66A-123	06-1808-8	· N	5030B	CLP-VOC	Ш
16-Mar-2006	04_DGMW66A-123	06-1808-8	N	7470A	CLP-Metal	, III
16-Mar-2006	04_DGMW66A-123	06-1808-8RE	N	3010A	CLP-Metal	Ш
16-Mar-2006	04_UGMW63-123	06-1808-9	N	3010A	CLP-Metal	١٧
16-Mar-2006	04_UGMW63-123	06-1808-9	N	5030B	CLP-VOC	iV .
16-Mar-2006	04_UGMW63-123	06-1808-9	N	7470A	CLP-Metal	IV
16-Mar-2006	04_UGMW63-123MS	06-1808-9MS	MS	5030B	CLP-VOC	m
16-Mar-2006	04_UGMW63-123MSD	06-1808-9MSD	MSD	5030B	CLP-VOC	
16-Mar-2006	04_UGMW63-123	06-1808-9RE	N	3010A	CLP-Metal	IV

# **Attachment II**

# **Overall Data Qualification Summary**

Analytical Method	Field Sample ID	Matrix	Sample Type	•	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61808									<del>*************************************</del>		
CLP-Metal	02_NEW8A-123	AQ	N		· · · · · · · · · · · · · · · · · · ·	······································	•••••	······································		•••••	· · · · · · · · · · · · · · · · · · ·
				ALUMINUM		200	21.8B		J	ug/L	
				ARSENIC		10	7.3B		U	ug/L	
				BARIUM		200	41.9B		J	ug/L	
				CHROMIUM		. 10	2.7B		J	ug/L	
				COPPER		25	1.5B		Ū	ug/L	
				IRON		100	22.2B		J	ug/L	
•		·		MANGANESE		15	0.66B		U	ug/L	
				MERCURY		0.2	0.075B		U ·	ug/L	
				NICKEL		40	1.0B		J	ug/L	
				POTASSIUM		5000	1680B		J	ug/L	
	•			VANADIUM	•	50	5.0B		J ·	ug/L	
				ZINC		20	2.3B		J	ug/L	
CLP-Metal	02NEW7-123	AQ	N				·		************		•••••
				ALUMINUM		200	27.8B		J	ug/L	
				ARSENIC		10	7.1B		Ü	ug/L	
	~			BARIUM		200	79.9B		J	ug/L	
				CHROMIUM		10	3.0B		J	ug/L	
				COPPER		25	3.9B		UJ	ug/L	
				IRON		100	40.4B		J	ug/L	
		•		MANGANESE	•	15	1.8B		UJ -	ug/L	•
				MERCURY		0.2	0.096B		UJ	ug/L	
				NICKEL		40	2.1B		J	ug/L	
				POTASSIUM		5000	1930B		J	ug/L	
				VANADIUM		50	12.6B		J	ug/L	

N = Normal Sample TB = Trip Blank FD = Field Duplicate FB = Field Blank

Analytical Method	Field Sample ID	Matrix	Sample Type		Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61808											
CLP-Metal	02NEW7-323	AQ	FD								
				ALUMINUM		200	200U		IJ	ug/L	
				ARSENIC		10	7.4B		U.	ug/L	
				BARIUM		200	80.3B		J	ug/L	
				CHROMIUM		10	2.6B		J	ug/L	
			•	COPPER		25	2.4B		UJ	ug/L	
				IRON		100	29.3B		J	ug/L	
*				MANGANESE		15	1.3B		IJ	ug/L	
				MERCURY		0.2	0.12B		UJ	ug/L	
	•	. •		NICKEL		40	1.9B		J	ug/L	
				POTASSIUM		5000	1860B		J	ug/L	
	•	•		VANADIUM		50	12.5B		J	ug/L	
•				ZINC		20	19.1B		J	ug/L	
CLP-Metal	03_DGMW64A-123	AQ	N								
•	·			ARSENIC		10	6.2B		U	ug/L	
				BARIUM		200	29.8B		J	ug/L	
				CHROMIUM		10	7.4B		J	ug/L	
				COPPER		25	3.4B		U	ug/L	
				IRON		100	37.2B		J	ug/L	
				MANGANESE		15	11.9B		J	ug/L	
		-		MERCURY.	-	0.2	0.034B		·U	ug/L	
				POTASSIUM		5000	4780B		J	ug/L	
				THALLIUM		10	1.9B		J	ug/L	
				VANADIUM		50	20.0B		J	ug/L	

Analytical Method	Field Sample ID	Matrix	Sample Type		Analyte		RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61808					··· ··· ··· ··· ··· ··· ···							
CLP-Metal	03_DGMW65XA-123	AQ	N			······					•••••	
4				ALUMINUM		•	200	25.8B		J	ug/L	
•				ARSENIC			10	9.5B		Ü	ug/L	
				BARIUM			200	64.2B		J	ug/L	
				CHROMIUM			10	6.0B		J	ug/L	
				COBALT			50	1.0B		U	ug/L	
				COPPER			25	3,5B		U,	ug/L	
	•			IRON			100	114		J	ug/L	
				MERCURY	•		0.2	0.064B		· UJ	ug/L	
				POTASSIUM			5000	3840B		J	ug/L	
				THALLIUM			10	2.4B		J ·	ug/L	
	•		•	VANADIUM			50	41.8B		J	ug/L	
CLP-Metal	03_DGMW65XA-323	AQ	FD			***************************************			***********			
•	•		•	ALUMINUM	•	•	200	25.5B	•	J	ug/L	•
				ARSENIC			10	9.7B		. <b>U</b> .	ug/L	
				BARIUM			200	63.8B		J	ug/L	
				CHROMIUM			10	5.3B		j	ug/L	
				COBALT		•	50	0.85B		U	ug/L	
	•			COPPER			25	3.5B		U	ug/L	
				IRON			100	74.3B		J	ug/L	
				MERCURY		•	0.2	0.11B		UJ	ug/L	
				POTASSIUM			5000	3890B		J	ug/L	
				THALLIUM			10	2.9B		J	ug/L	
	•			VANADIUM			50	40.8B		J	ug/L	

N = Normal Sample TB = Trip Blank FD = Field Duplicate FB = Field Blank

Page 3 of 8

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61808										
CLP-Metal	04_DGMW66A-123	AQ	N					************		
				ARSENIC	10	5.9B		U	ug/L	
				BARIUM	200	74.4B		J	ug/L	
				CHROMIUM	10	4.9B		J	ug/L	
				COBALT	50	1.2B		U	ug/L	
				COPPER	25	3.8B		U	ug/L	
				MERCURY	0.2	0.026B		U	ug/L	
	•			SELENIUM	5	3.5B		J	ug/L	
				THALLIUM	10	2.7B		j	ug/L	
				VANADIUM	50	18.9B		J	ug/L	
CLP-Metal	04_UGMW63-123	AQ	N							
	•			ALUMINUM	200	19.3B		J	ug/L	
				ARSENIC	10	4.5B		U	ug/L	
	•			BARIUM	200	76.2B		J	ug/L	
	•			CHROMIUM	10	3.8B		J	ug/L	
				COBALT	50	2.1B		U	ug/L	
				COPPER	25	5.0B		U	ug/L	
				IRON	.100	29.5B		J	ug/L	
				MERCURY	0.2	0.091B		U	ug/L	
				POTASSIUM	5000	3820B		J	ug/L	
				THALLIUM .	- 10	3.0B	•	J	ug/L	•
				VANADIUM	50	13.9B		J	ug/L	
				ZINC	20	9.3B		J	ug/L	

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61808									<del>- ;; ; ; , .</del>	
CLP-Metal	05_DBMW41A-123	AQ	N						•••••	
				ALUMINUM	200	40.6B		J	ug/L	
				ARSENIC	10	5.1B		U	ug/L	
				BARIUM	200	59.1B		J	ug/L	
				CHROMIUM	10	3.7B		J	ug/L	
				COPPER	25	4.2B		U	ug/L	
				IRON	100	43.5B		J	ug/L	
•	•		•	MANGANESE	15	2.5B		· U	ug/L	•
				MERCURY	0.2	0.11B		U	ug/L	
				NICKEL	40	4.5B		J	ug/L	
				POTASSIUM	5000	2890B		J	ug/L	
				THALLIUM	10	2.0B		J	ug/L	
				VANADIUM	50	10.4B		J	ug/L	
CLP-Metal	05_DGMW68A-123	AQ	N							
			.,	ALUMINUM	200	32.4B		J	ug/L	
				ARSENIC	10	4.6B		Ü	ug/L	
		*		BARIUM	200	24.7B		J	ug/L	
				CHROMIUM	10	3.8B		J	ug/L	
				COPPER	25	9.1B		J	ug/L	
				IRON	100	51.8B		J	ug/L	
				MANGANESE	15	5.2B		J	ug/L	
				MERCURY	0.2	0.089B		Ü	ug/L	
			•	NICKEL	40	6.1B		J	ug/L	
				POTASSIUM	5000	3150B		J	ug/L	
				VANADIUM	50	11.4B		J	ug/L	
CLP-VOC	01_MW201-123	AQ	N							
			••	1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L ug/L	
				2-HEXANONE	• 10	10U		UJ	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	- •	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	. 1				ug/L	
		•		DICHLORODIFLOCKOWETHANE	. 1	1U	•	UJ	ug/L	

N = Normal Sample TB = Trip Blank FD = Field Duplicate FB = Field Blank

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overali Qualifier	Units	Reaso: Code
SDG: 61808										
CLP-VOC	02_NEW8A-123	AQ	N		• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •
				1,2-DICHLOROPROPANE	1	1U		UJ -	ug/L	
				2-BUTANONE (MEK)	10	10U		IJ	ug/L	
				2-HEXANONE	. 10	10U		UJ -	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
•				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
CLP-VOC	02NEW7-123	AQ	N						*******	• • • • • • • • • • • • • • • • • • • •
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				2-HEXANONE	10	10U		UJ	ug/L	
	•			CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
	•			CHLOROBENZENE	11	0.4J		J	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
		•		DICHLORODIFLUOROMETHANE	1	1U .		UJ	ug/L	
	•			TETRACHLOROETHENE	1	0.9J		J	ug/L	
				TOLUENE	1	0.4J		J	ug/L	
LP-VOC	02NEW7-323	AQ	FD							
		•		1,2-DICHLOROPROPANE	1	· 1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
	•			2-HEXANONE	10	10U		UJ	ug/L	•
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
				CHLOROBENZENE	1	0.4J		J	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	0.8J		J	ug/L	
				TOLUENE	. 1	0.4J		J	ug/L	

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61808		• • • • • • • • • • • • • • • • • • • •								
CLP-VOC	03_DGMW64A-123	AQ	N .	·	· · · · · · · · · · · · · · · · · · ·					
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				2-HEXANONE	10	10U		UJ	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
	•			DICHLORODIFLUOROMETHANE	. 1	10	•	UJ	ug/L	-
CLP-VOC	03_DGMW65XA-123	AQ	N							••••••
•	•			1,2-DICHLOROPROPANE	. 1	1U		UJ	ug/L	
	•			2-BUTANONE (MEK)	10	10U		UJ	ug/L	•
				2-HEXANONE	10	10U		UJ	ug/L	
•				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
•				CHLOROETHANE	1	1U		UJ -	ug/L	
	•	•		DICHLORODIFLUOROMETHANE	1	1Ü		UJ	ug/L	
CLP-VOC	03_DGMW65XA-323	AQ	FD						•••••	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		IJ	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		ÜJ	ug/L	
		· ·		CHLOROETHANE	1	1U		UJ	ug/L	
CLP-VOC	04_DGMW66A-123	AQ	N		• • • • • • • • • • • • • • • • • • • •					
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	. 10	10U		UJ ·	ug/L	
	•			2-HEXANONE	10	10U		UJ	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
•				DICHLORODIFLUOROMETHANE	, 1	1U		UJ	ug/L	

N = Normal Sample TB = Trip Blank FD = Field Duplicate FB = Field Blank

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61808		·····								
CLP-VOC	04_UGMW63-123	AQ	N						• • • • • • • • • • • • • • • • • • • •	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				2-HEXANONE	10	10U		UJ	ug/L	
•				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	<b>1</b> U		UJ	ug/L	
CLP-VOC	05_DBMW41A-123	AQ	N							
	-			1,2-DICHLOROPROPANE	1 .	<b>1</b> U		UJ	ug/L	•
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				2-HEXANONE	10	10U		UJ	ug/L	
				BROMODICHLOROMETHANE	1	0.5J		J	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		UJ .	ug/L	
			٠	CHLOROETHANE	1	- 1U		UJ	ug/L	
•	•	•		DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
CLP-VOC	05_DGMW68A-123	AQ	N	······································		************		•-•		
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
	•			2-BUTANONE (MEK)	10	10U		UJ	ug/L	
		·		2-HEXANONE	10	10U		UJ -	ug/L	
				BROMODICHLOROMETHANE	1 .	0.6J		J	ug/L	
•	•			CARBON TETRACHLORIDE	0.5	0.5U		UJ .	ug/L	
				CHLOROETHANE	1	<b>1</b> U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	<b>1</b> U		UJ	ug/L	
CLP-VOC	BT1-923	AQ	ТВ							
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				2-HEXANONE	10	10U		ÚJ	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U	*	UJ	ug/L	
•	•			METHYLENE CHLORIDE	5	0.3J		J	ug/L	
ř									-	

# Attachment III

# **CDM Database Qualification Summary**

# CDM Federal Programs Corporation

# Reason for Qualified Results SDG Nos.: 61808

Project No # : 14786

Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Detected Qualifier	Non Detected Qualifier	Analyte Name	Reason
51808	01_MW201-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
31808	01_MW201-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
31808	01_MW201-123	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
51808	01_MW201-123	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
31808	01_MW201-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
31808	01_MW201-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
1808	02_NEW8A-123	CLP-Metal	7440382	· U		ARSENIC	Present in method blank
1808	02_NEW8A-123	CLP-Metal	7440508	U		COPPER	Present in method blank
1808	02_NEW8A-123	CLP-Metal	7439965	U		MANGANESE	Present in method blank
1808	02_NEW8A-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
1808	02_NEW8A-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
1808	02_NEW8A-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
1808	02_NEW8A-123	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
1808	02_NEW8A-123	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
1808	02_NEW8A-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
1808	02_NEW8A-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
1808	02NEW7-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
1808	02NEW7-123	CLP-Metal	7440508	U		COPPER	Present in method blank
1808	02NEW7-123	CLP-Metal	7439965	. U		MANGANESE	Present in method blank
1808	02NEW7-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
1808	02NEW7-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
1808	02NEW7-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
1808	02NEW7-123	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
1808	02NEW7-123	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
1808	02NEW7-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
1808	02NEW7-123	CLP-VOC	75718	,	J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
1808	02NEW7-323	CLP-Metal	7440382	U	***************************************	ARSENIC	Present in method blank
1808	02NEW7-323	CLP-Metal	7440508	U	<del></del>	COPPER	Present in method blank
1808	02NEW7-323	CLP-Metal	7439965	U		MANGANESE	Present in method blank
1808	02NEW7-323	CLP-Metal	7439976	U		MERCURY	Present in method blank
1808	02NEW7-323	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
1808	02NEW7-323	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference

#### Project No # : 14786

# CDM Federal Programs Corporation Reason for Qualified Results SDG Nos.: 61808

Non
Detector

02NEW7-323	Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Detected Qualifier	Non Detected Qualifier	Analyte Name	Reason
Street	61808	02NEW7-323	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
	61808	02NEW7-323	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61808   03_DGMW64A-123   CLP-Metal   7440382   U   ARSENIC   Present in method blank	61808	02NEW7-323	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
1808   03_DGMW64A-123   CLP-Metal   7440508   U   COPPER   Present in method blank	61808	02NEW7-323	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
1808   03_DGMW64A-123   CLP-WoC   78975   U   MERCURY   Present in method blank	61808	03_DGMW64A-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
	61808	03_DGMW64A-123	CLP-Metal	7440508	U		COPPER	Present in method blank
61808   03_DGMW64A-123   CLP-VOC   78933   J. 2-BUTANONE (MEK)   Continuing calibration percent different of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of	61808	03_DGMW64A-123	CLP-Metal	7439976	U	-	MERCURY	Present in method blank
61808   03_DGMW64A-123   CLP-VOC   591786   J 2-HEXANONE   Continuing calibration percent different   61808   03_DGMW64A-123   CLP-VOC   56235   J CARBON TETRACHLORIDE   Continuing calibration percent different   61808   03_DGMW64A-123   CLP-VOC   75003   J CHLOROETHANE   Continuing calibration percent different   61808   03_DGMW65A-123   CLP-WoC   75718   J DICHLORODETHANE   Continuing calibration percent different   61808   03_DGMW65XA-123   CLP-Welal   744084   U COBALT   Present in method blank   61808   03_DGMW65XA-123   CLP-Metal   7440508   U COPPER   Present in method blank   61808   03_DGMW65XA-123   CLP-Welal   7440508   U COPPER   Present in method blank   61808   03_DGMW65XA-123   CLP-Welal   7439976   U MERCURY   Present in method blank   61808   03_DGMW65XA-123   CLP-WoC   78875   J 1_2-DICHLOROPROPANE   Continuing calibration percent different   61808   03_DGMW65XA-123   CLP-WoC   78875   J 1_2-DICHLOROPROPANE   Continuing calibration percent different   61808   03_DGMW65XA-123   CLP-WoC   75933   J 2-BUTANONE (MEK)   Continuing calibration percent different   61808   03_DGMW65XA-123   CLP-WoC   591786   J 2-HEXANONE   Continuing calibration percent different   61808   03_DGMW65XA-123   CLP-WoC   56235   J CARBON TETRACHLORIDE   Continuing calibration percent different   61808   03_DGMW65XA-123   CLP-WoC   56235   J CARBON TETRACHLORIDE   Continuing calibration percent different   61808   03_DGMW65XA-123   CLP-WoC   75018   J DCHLORODIFLUOROMETHANE   Continuing calibration percent different   61808   03_DGMW65XA-323   CLP-WoC   75718   J DCHLORODIFLUOROMETHANE   Continuing calibration percent different   61808   03_DGMW65XA-323   CLP-WoC   75718   J DCHLORODIFLUOROMETHANE   Continuing calibration percent different   61808   03_DGMW65XA-323   CLP-WoC   75718   J DCHLORODIFLUOROMETHANE   Continuing calibration percent different   61808   03_DGMW65XA-323   CLP-WoC   75875   J ALP-WoC   75875   J ALP	61808	03_DGMW64A-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61808 03_DGMW64A-123 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different fil	61808	03_DGMW64A-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61808 03_DGMW64A-123 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of the continuing calibration percent different files of th	61808	03_DGMW64A-123	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
61808         03_DGMW64A-123         CLP-VOC         75718         J DICHLORODIFLUOROMETHANE         Continuing calibration percent different           61808         03_DGMW65XA-123         CLP-Metal         7440382         U ARSENIC         Present in method blank           61808         03_DGMW65XA-123         CLP-Metal         7440484         U COBALT         Present in method blank           61808         03_DGMW65XA-123         CLP-Metal         7440508         U COPPER         Present in method blank           61808         03_DGMW65XA-123         CLP-Metal         7439976         U MERCURY         Present in method blank           61808         03_DGMW65XA-123         CLP-VOC         78875         J 1,2-DICHLOROPROPANE         Continuing calibration percent different           61808         03_DGMW65XA-123         CLP-VOC         76933         J 2-BUTANONE (MEK)         Continuing calibration percent different           61808         03_DGMW65XA-123         CLP-VOC         591786         J 2-HEXANONE         Continuing calibration percent different           61808         03_DGMW65XA-123         CLP-VOC         56235         J CARBON TETRACHLORIDE         Continuing calibration percent different           61808         03_DGMW65XA-123         CLP-VOC         75003         J CHLOROETHANE         Continuing calib	61808	03_DGMW64A-123	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61808         03_DGMW65XA-123         CLP-Metal         7440382         U         ARSENIC         Present in method blank           61808         03_DGMW65XA-123         CLP-Metal         7440484         U         COBALT         Present in method blank           61808         03_DGMW65XA-123         CLP-Metal         7440508         U         COPPER         Present in method blank           61808         03_DGMW65XA-123         CLP-Wetal         7439976         U         MERCURY         Present in method blank           61808         03_DGMW65XA-123         CLP-VOC         78875         J         1,2-DICHLOROPROPANE         Continuing calibration percent different           61808         03_DGMW65XA-123         CLP-VOC         78933         J         2-BUTANONE (MEK)         Continuing calibration percent different           61808         03_DGMW65XA-123         CLP-VOC         591786         J         2-HEXANONE         Continuing calibration percent different           61808         03_DGMW65XA-123         CLP-VOC         56235         J         CARBON TETRACHLORIDE         Continuing calibration percent different           61808         03_DGMW65XA-123         CLP-VOC         75003         J         CHLOROETHANE         Continuing calibration percent different           61808 <td>61808</td> <td>03_DGMW64A-123</td> <td>CLP-VOC</td> <td>75003</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>J</td> <td>CHLOROETHANE</td> <td>Continuing calibration percent difference</td>	61808	03_DGMW64A-123	CLP-VOC	75003	· · · · · · · · · · · · · · · · · · ·	J	CHLOROETHANE	Continuing calibration percent difference
61808 03_DGMW65XA-123 CLP-Metal 744084 U COBALT Present in method blank 61808 03_DGMW65XA-123 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-123 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-123 CLP-WOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-WOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-WOC 591786 J 2-HEXANONE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-WOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-WOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-WOC 75013 J DICHLORODIFLUOROMETHANE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-WOC 75718 J DICHLORODIFLUOROMETHANE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-WoC 75718 J DICHLORODIFLUOROMETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-Metal 7440382 U ARSENIC Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440484 U COBALT Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-323 CLP-WoC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-WoC 78833 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-WOC 78833 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-WOC 75003 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-WOC 75003 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-WOC 75003 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-WOC 75003 J CARBON TETRACHLORIDE Continuing calibration percent difference	61808	03_DGMW64A-123	CLP-VOC	75718	<del></del>	J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61808 03_DGMW65XA-123 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-123 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-123 CLP-VOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 591786 J 2-HEXANONE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 75718 J DICHLORODIFLUOROMETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-Metal 7440382 U ARSENIC Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440484 U COBALT Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-323 CLP-WOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 78893 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference	61808	03_DGMW65XA-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61808 03_DGMW65XA-123 CLP-Wetal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-123 CLP-VOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 591786 J 2-HEXANONE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 75718 J DICHLORODIFLUOROMETHANE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-Wetal 7440382 U ARSENIC Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440484 U COBALT Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-323 CLP-WoC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 788933 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference	61808	03_DGMW65XA-123	CLP-Metal	7440484	U		COBALT	Present in method blank
61808 03_DGMW65XA-123 CLP-VOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference   61808 03_DGMW65XA-123 CLP-VOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference   61808 03_DGMW65XA-123 CLP-VOC 591786 J 2-HEXANONE Continuing calibration percent difference   61808 03_DGMW65XA-123 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference   61808 03_DGMW65XA-123 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference   61808 03_DGMW65XA-123 CLP-VOC 75718 J DICHLOROETHANE Continuing calibration percent difference   61808 03_DGMW65XA-123 CLP-WOC 75718 J DICHLOROETHANE Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-Metal 7440382 U ARSENIC Present in method blank   61808 03_DGMW65XA-323 CLP-Metal 7440484 U COBALT Present in method blank   61808 03_DGMW65XA-323 CLP-Metal 7440508 U COPPER Present in method blank   61808 03_DGMW65XA-323 CLP-Metal 7439976 U MERCURY Present in method blank   61808 03_DGMW65XA-323 CLP-WOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-VOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-VOC 78033 J CARBON TETRACHLORIDE Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference   61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE COntinuing calibration percent differ	61808	03_DGMW65XA-123	CLP-Metal	7440508	U		COPPER	Present in method blank
G1808 03_DGMW65XA-123 CLP-VOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent	61808	03_DGMW65XA-123	CLP-Metal	7439976	U	_	MERCURY	Present in method blank
61808 03_DGMW65XA-123 CLP-VOC 591786 J 2-HEXANONE Continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent diffe	61808	03_DGMW65XA-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61808 03_DGMW65XA-123 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-123 CLP-VOC 75718 J DICHLORODIFLUOROMETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-Metal 7440382 U ARSENIC Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440484 U COBALT Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-323 CLP-Woc 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 78833 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE COntinuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE COntinuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE COntinuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE	61808	03_DGMW65XA-123	CLP-VOC	78933		·J	2-BUTANONE (MEK)	Continuing calibration percent difference
61808 03_DGMW65XA-123 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent dif	61808	03_DGMW65XA-123	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
61808 03_DGMW65XA-123 CLP-VOC 75718 J DICHLORODIFLUOROMETHANE Continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration	61808	03_DGMW65XA-123	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61808 03_DGMW65XA-323 CLP-Metal 7440382 U ARSENIC Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440484 U COBALT Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-323 CLP-VOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference	61808	03_DGMW65XA-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61808 03_DGMW65XA-323 CLP-Metal 7440484 U COBALT Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-323 CLP-VOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference	61808	03_DGMW65XA-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61808 03_DGMW65XA-323 CLP-Metal 7440508 U COPPER Present in method blank 61808 03_DGMW65XA-323 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-323 CLP-VOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference	61808	03_DGMW65XA-323	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61808 03_DGMW65XA-323 CLP-Metal 7439976 U MERCURY Present in method blank 61808 03_DGMW65XA-323 CLP-VOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference	61808	03_DGMW65XA-323	CLP-Metal	7440484	U		COBALT	Present in method blank
61808 03_DGMW65XA-323 CLP-VOC 78875 J 1,2-DICHLOROPROPANE Continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration percent difference of the continuing calibration perc	61808	03_DGMW65XA-323	CLP-Metal	7440508	U		COPPER	Present in method blank
61808 03_DGMW65XA-323 CLP-VOC 78933 J 2-BUTANONE (MEK) Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE	61808	03_DGMW65XA-323	CLP-Metal	7439976	U		MERCURY	Present in method blank
61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 CLP-VOC 75003 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 CLP-VOC 75003 J CHLOROETHANE CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATION PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTINUING CALIBRATICAL PERCENT CONTIN	61808	03_DGMW65XA-323	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61808 03_DGMW65XA-323 CLP-VOC 56235 J CARBON TETRACHLORIDE Continuing calibration percent difference 61808 03_DGMW65XA-323 CLP-VOC 75003 J CHLOROETHANE Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibration percent difference 61808 Continuing calibrati	61808	03_DGMW65XA-323	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
	61808	03_DGMW65XA-323	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61808 OA DOMANGEA 123 CI D Motel 7440292 II ADSCRIIO	61808	03_DGMW65XA-323	CLP-VOC	75003	****	J	CHLOROETHANE	Continuing calibration percent difference
Tresent in method blank	61808	04_DGMW66A-123	CLP-Metal	7440382	U	<del>.</del>	ARSENIC	Present in method blank

# CDM Federal Programs Corporation Reason for Qualified Results SDG Nos.: 61808

					Non		
Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Detected Qualifier	Detected Qualifier	Analyte Name	Reason
61808	04_DGMW66A-123	CLP-Metal	7440484	U		COBALT	Present in method blank
61808	04_DGMW66A-123	CLP-Metal	7440508	U		COPPER	Present in method blank
61808	04_DGMW66A-123	CLP-Metal	7439976	U	1	MERCURY	Present in method blank
61808	04_DGMW66A-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61808	04_DGMW66A-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61808	04_DGMW66A-123	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
61808	04_DGMW66A-123	CLP-VOC	56235		J .	CARBON TETRACHLORIDE	Continuing calibration percent difference
61808	04_DGMW66A-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61808	04_DGMW66A-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61808	04_UGMW63-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61808	04_UGMW63-123	CLP-Metal	7440484	U		COBALT	Present in method blank
61808	04_UGMW63-123	CLP-Metal	7440508	U		COPPER	Present in method blank
61808	04_UGMW63-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
61808	04_UGMW63-123	CLP-VOC	78875		J .	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61808	04_UGMW63-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61808	04_UGMW63-123	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
61808	04_UGMW63-123	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61808	04_UGMW63-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61808	04_UGMW63-123	CLP-VOC	75718		. J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61808	05_DBMW41A-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61808	05_DBMW41A-123	CLP-Metal	7440508	Ų		COPPER	Present in method blank
61808	.05_DBMW41A-123	CLP-Metal	7439965	U		MANGANESE	Present in method blank
61808	05_DBMW41A-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
61808	05_DBMW41A-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61808	05_DBMW41A-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61808	05_DBMW41A-123	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
61808	05_DBMW41A-123	CLP-VOC	56235		J ·	CARBON TETRACHLORIDE	Continuing calibration percent difference
61808	05_DBMW41A-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61808	05_DBMW41A-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61808	05_DGMW68A-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61808	05_DGMW68A-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
61808	05_DGMW68A-123	CLP-VOC	78875	·	J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
	· · · · · · · · · · · · · · · · · · ·					W-11/2	

#### Project No # : 14786

# CDM Federal Programs Corporation Reason for Qualified Results SDG Nos.: 61808

Sample ID	Test Method	CAS No.			Reason
*			qualific		
05_DGMW68A-123	CLP-VOC	78933	J	2-BUTANONE (MEK)	Continuing calibration percent difference
05_DGMW68A-123	CLP-VOC	591786	J	2-HEXANONE	Continuing calibration percent difference
05_DGMW68A-123	CLP-VOC	56235	J	CARBON TETRACHLORIDE	Continuing calibration percent difference
05_DGMW68A-123	CLP-VOC	75003	J	CHLOROETHANE	Continuing calibration percent difference
05_DGMW68A-123	CLP-VOC	75718	J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
BT1-923	CLP-VOC	78875	J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
BT1-923	CLP-VOC	78933	· J	2-BUTANONE (MEK)	Continuing calibration percent difference
BT1-923	CLP-VOC	591786	J	2-HEXANONE	Continuing calibration percent difference
BT1-923	CLP-VOC	56235	· J	CARBON TETRACHLORIDE	Continuing calibration percent difference
BT1-923	CLP-VOC	75003	J	CHLOROETHANE	Continuing calibration percent difference
BT1-923	CLP-VOC	75718	· J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
	05_DGMW68A-123 05_DGMW68A-123 05_DGMW68A-123 BT1-923 BT1-923 BT1-923 BT1-923 BT1-923	05_DGMW68A-123         CLP-VOC           05_DGMW68A-123         CLP-VOC           05_DGMW68A-123         CLP-VOC           05_DGMW68A-123         CLP-VOC           05_DGMW68A-123         CLP-VOC           BT1-923         CLP-VOC	05_DGMW68A-123         CLP-VOC         78933           05_DGMW68A-123         CLP-VOC         591786           05_DGMW68A-123         CLP-VOC         56235           05_DGMW68A-123         CLP-VOC         75003           05_DGMW68A-123         CLP-VOC         75718           BT1-923         CLP-VOC         78875           BT1-923         CLP-VOC         78933           BT1-923         CLP-VOC         591786           BT1-923         CLP-VOC         56235           BT1-923         CLP-VOC         75003	Sample ID         Test Method         CAS No.         Detected Qualifier         Detected Qualifier           05_DGMW68A-123         CLP-VOC         78933         J           05_DGMW68A-123         CLP-VOC         591786         J           05_DGMW68A-123         CLP-VOC         56235         J           05_DGMW68A-123         CLP-VOC         75003         J           05_DGMW68A-123         CLP-VOC         75718         J           BT1-923         CLP-VOC         78875         J           BT1-923         CLP-VOC         78933         J           BT1-923         CLP-VOC         591786         J           BT1-923         CLP-VOC         56235         J           BT1-923         CLP-VOC         56235         J           BT1-923         CLP-VOC         75003         J	Sample ID         Test Method         CAS No.         Detected Qualifier Qualifier Qualifier Analyte Name           05_DGMW68A-123         CLP-VOC         78933         J         2-BUTANONE (MEK)           05_DGMW68A-123         CLP-VOC         591786         J         2-HEXANONE           05_DGMW68A-123         CLP-VOC         56235         J         CARBON TETRACHLORIDE           05_DGMW68A-123         CLP-VOC         75003         J         CHLOROETHANE           05_DGMW68A-123         CLP-VOC         75718         J         DICHLORODIFLUOROMETHANE           BT1-923         CLP-VOC         78875         J         1,2-DICHLOROPROPANE           BT1-923         CLP-VOC         78933         J         2-BUTANONE (MEK)           BT1-923         CLP-VOC         591786         J         2-HEXANONE           BT1-923         CLP-VOC         56235         J         CARBON TETRACHLORIDE           BT1-923         CLP-VOC         56235         J         CARBON TETRACHLORIDE           BT1-923         CLP-VOC         75003         J         CHLOROETHANE

# **Enclosure I**

# **EPA Level III ADR Outliers** (including Manual Review Outliers)

# Quality Control Outlier Reports

SDG 06-1808

	AOR	
LDC #: 14786A1	_ VALIDATION COMPLETENESS WORKSHEET	Date:4/3/04
SDG #: 06-1808	_ Level III/IV	Page: //of/
Laboratory: Applied Physics	& Chemistry Laboratory	Reviewer: Q
•		2nd Reviewer: <u> </u>

METHOD: GC/MS Volatiles (EPA CLP SOW OLM04.1)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
i.	Technical holding times	4	Sampling dates: 8/16/0-6
11.	GC/MS Instrument performance check	♠	
. 111.	Initial calibration	<u> </u>	
IV.	Continuing calibration	_W	
V.	Blanks	4	
VI.	Surrogate spikes	₩\	
VII.	Matrix spike/Matrix spike duplicates	<b>\$</b>	NOMS/MSD for #7 None A
VIII.	Laboratory control samples	4	205
IX.	Regional Quality Assurance and Quality Control	N	
<b>۴X</b> .	Internal standards	4	
XI.	Target compound identification	<b>A</b>	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	<b>₩</b>	Not reviewed for Level III validation.
XIII.	Tentitatively identified compounds (TICs)	4	Not reviewed for Level III validation.
XIV.	System performance	4	Not reviewed for Level III validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	W	D=6+7·2+3.
XVII.	Field blanks	W	T3=12

Jote.	Δ	= 4

ND = No compounds detected

D = Duplicate

A = Acceptable ND
N = Not provided/applicable R = Rinsate
SW = See worksheet FB

FB = Field blank

TB = Trip blank EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation

M	H ² U 9						<u> </u>
1/	01_MW201-123	11 /	05_DGMW68A-123	21 /	0641410MB01	31	
2/	02NEW7-123	12/	BT1-923	22	0641410MB0/ 064419MB0/	32	
3'	02NEW7-323	13	04_UGMW63-123MS	23	/ /	33_	
4	02_NEW8A-123	14/	04_UGMW63-123MSD	24		34	
5	03_DGMW64A-123**	15		25		35	
6	03_DGMW65XA-123	16		26		36	
72	03_DGMW65XA-323	17		27		37	·
8	04_DGMW66A-123	18		28		38	
9/	04_UGMW63-123**	19		29		39	
10	05_DGMW41A-123	20		30		40	·

#### TARGET COMPOUND WORKSHEET

#### METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachloroethane*	W. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLL 1.1.2 Tirchbrotzifluoroethans
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS. o-Xylene	мммм.
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	<u>a</u> aaa.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY, tert-Butanol	ssss.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	тттт.
S. Trichloroethene	MM, 1,2-Dibromo-3-chloropropane	GGG. p-isopropyitoluene	AAAA. Ethyl tert-butyl ether	uuuu.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH, 1,4-Dichlorobenzene	BBBB, tert-Amyl methyl ether	ww.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.



SDG #:00-1808

#### VALIDATION FINE GS WORKSHEET Continuing Calibration

Reviewer 2nd Reviewer:

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y(N)N/A Were all percent differences (%D)  $\leq$  25% and relative response factors (RRF)  $\geq$  0.05?

#	Date	Standard ID	Compound	Finding %D (Limit: <u>&lt;</u> 25.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	3/20/06	\$1410R01	7	26.2		1-6.8-14	1/U1/A
	/ /		<b>カ</b>	3=,/		06 \$14 10 MB 01	7 1 7
			И	65.7			
			0	29.8		:	
			R	40.5		-	-
	·		z	27.0	:	·	V·.
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	·		
	-/-/-						
	3/21/06	G1419201	D	39.8	· · · · · · · · · · · · · · · · · · ·	7.065H19HBA	-/u1/A
	. ( /			85.1	· · · · · · · · · · · · · · · · · · ·		
			0	26.0			
			<u> </u>	38.9			
		<u> </u>			<u>.</u>		
_						<del> </del>	
				•			
	-		, .				
$\neg$							
						1.	· · · · · · · · · · · · · · · · · · ·
				-			
				<u> </u>			
_							
		·		•		-	

#### Method Blank Outlier Report

Lab Reporting Batch: 61808

Analysis Method : CLP-Metal

Preparation Type: 3010A

Method Blank Lab Sample ID: 06M1161-MB-01

Lab ID: APCL

Analysis Date: 03/20/2006

Preparation Date: 03/20/2006

Preparation Batch: 06M1161M

ARSENIC	Result	Reporting Limit	Units	Lab Qual	Comments	
Method Blank Result:	1.5	10	ug/L	В		_

ARSENIC was qualified due to method blank contamination in the following associated samples:

				Lab	Result
Client Sample ID	Lab Sample ID	Dilution	Result	Qual	Units
02_NEW8A-123	06-1808-4	1	7.3	В	ug/L
02NEW7-123	06-1808-2	['] 1	7.1	В	ug/L
02NEW7-323	06-1808-3	1	7.4	В	ug/L
03_DGMW64A-123	06-1808-5	1	6.2	В	ug/L
04_DGMW66A-123	06-1808-8	1	5.9	, <b>B</b>	ug/L
04_UGMW63-123	06-1808-9	1	4.5	В	ug/L
05_DBMW41A-123	06-1808-10	1	5.1	В	ug/L
05_DGMW68A-123	06-1808-11	1	4.6	, В	ug/L

Report Date: 4/6/2006 10:57

### Method Blank Outlier Report

Lab Reporting Batch: 61808

Lab ID: APCL

Analysis Method : CLP-Metal

Analysis Date: 03/22/2006

Comments

Preparation Date: 03/22/2006

Preparation Type: 7470A

Preparation Batch: 06M1174H

Method Blank Lab Sample ID: 06M1174-MB-01

Method Blank Result:

**MERCURY** 

Result	Reporting Limit	Units	Lab Qual
0.072	0.2		

#### MERCURY was qualified due to method blank contamination in the following associated samples:

Client Sample ID	Lab Sample ID	Dilution	Result	Lab Qual	Result Units
02_NEW8A-123	06-1808-4	1	0.075	<u>В</u>	ug/L
02NEW7-123	06-1808-2	1	0.096	В	ug/L
02NEW7-323	06-1808-3	1	0.12	В	ug/L
03_DGMW64A-123	06-1808-5	1	0.034	В	ug/L
03_DGMW65XA-123	06-1808-6	ĭ	0.064	. В	ug/L
03_DGMW65XA-323	06-1808-7	1	0.11	В	ug/L
04_DGMW66A-123	06-1808-8	. 1	0.026	В	ug/L
04_UGMW63-123	06-1808-9	1	0.091	В	ug/L
05_DBMW41A-123	06-1808-10	1	0.11	В	ug/L
05_DGMW68A-123	06-1808-11	1	0.089	В	ug/L

Project Number and Name:

6218.084 - EL TORO

ADR 8.0

Report Date: 4/6/2006 10:57

METHOD: Dissolved Metals (EPA CLP SOW ILMO4.6)	SDG	#:14786A4 #:06-1808 pratory:_Applied Physics &	_		i e	evel III/I		HEET	Date: علم الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة الموادقة ا
Validation Area	MET	HOD: Dissolved Metals	(EPA	CLP SOW II	LMO4.Ø)		ADR		Zild Noviewei
I.   Technical holding times	The s	samples listed below wer ation findings worksheet	re rev s.	iewed for ea	ch of the fo	ollowing v	ralidation areas. V	alidation findin	gs are noted in attached
II.   Calibration		Validation	ı Are	a				Comments	
III.   Blanks	1.	Technical holding times			A	Sampling	dates: 3/16/06		
ICP Interference Check Sample (ICS) Analysis	11.	Calibration			A				
ICP Interference Check Sample (ICS) Analysis	111.	Blanks	_	· · · · · · · · · · · · · · · · · · ·	SW				
VII.   Duplicate Sample Analysis	IV.	ICP Interference Check Sa	mple (	ICS) Analysis	A				
VII.   Duplicate Sample Analysis	V.	Matrix Spike Analysis			<i>A</i> -	) 14.5	lan		
Vill.   Internal Standard (ICP-MS)	VI.	Duplicate Sample Analysis		·		7			
IX.   Furnace Atomic Absorption QC	VII.	Laboratory Control Sample	s (LCS	3)	A	Les			
X.   ICP Serial Dilution	VIII	. Internal Standard (ICP-MS	)			2 p.T	Utilized '		
XII.   Sample Result Verification   A	IX.	Furnace Atomic Absorption	QC		·N	3	<u> </u>		
XII.   Sample Result Verification   A	X.				A			·	
XII.   Overall Assessment of Data   A	XI.	Sample Result Verification				Not review	ed for Level III validati	ion.	
Note: A = Acceptable   ND = No compounds detected   N = Not provided/applicable   R = Rinsate   FB = Field blank   FB = Equipment blank	XII.								
Note: A = Acceptable   ND = No compounds detected   N = Not provided/applicable   R = Rinsate   FB = Field blank   FB = Equipment blank	XIII.	Field Duplicates	-		N				,
Note: A = Acceptable	XIV.								
2 02NEW7-323 12 02NEW7-123MSD 22 32 33 33 34 03_DGMW64A-123** 14 05_DGMW68A-123MS 24 34 34 35 03_DGMW65XA-123 15 05_DGMW68A-123MSD 25 35 35 35 35 35 35 35 35 35 35 35 35 35	Note:	N = Not provided/applicab SW = See worksheet		= Rinsate FB = Fie	id blank		B = Trip blank		
2 02NEW7-323 12 02NEW7-123MSD 22 32 33 33 34 03_DGMW64A-123** 14 05_DGMW68A-123MS 24 34 34 35 03_DGMW65XA-123 15 05_DGMW68A-123MSD 25 35 35 35 35 35 35 35 35 35 35 35 35 35		A)_	144	021/5/4/2 402/		24			
3 02 NEW8A-123 13 02NEW7-123DUP 23 33 34 34 03 DGMW64A-123** 14 05 DGMW68A-123MS 24 34 34 35 35 35 35 35 35 35 35 35 35 35 35 35			1 "				· · · · · · · · · · · · · · · · · · ·		
4 03_DGMW64A-123** 14 05_DGMW68A-123MS 24 34 34 5 03_DGMW65XA-123 15 06_DGMW68A-123MSD 25 35 35 6 03_DGMW65XA-323 16 05_DGMW68A-123DUP 26 36 36 7 04_DGMW66A-123 17 PT 27 37 37 37 8 04_UGMW63-123** 18 28 38 38 9 05_DGMW41A-123 19 29 39 39 10 05_DGMW68A-123 20 30 30 40									
5 03_DGMW65XA-123 15 96_DGMW68A-123M3D 25 35 35 6 03_DGMW65XA-323 16 05_DGMW68A-123DUP 26 36 36 7 04_DGMW66A-123 17 PT 27 37 37 37 8 04_UGMW63-123** 18 28 38 38 9 05_DGMW41A-123 19 29 39 39 10 05_DGMW68A-123 20 30 40									
6 03_DGMW65XA-323 16 05_DGMW68A-123DUP 26 36 36 7 04_DGMW66A-123 17 PT 27 37 37 37 8 04_UGMW63-123** 18 28 38 38 9 05_DGMW41A-123 19 29 39 39 10 05_DGMW68A-123 20 30 40			1			- 1			
7 04_DGMW66A-123 17 PTS 27 37 8 04_UGMW63-123** 18 28 38 9 05_DGMW41A-123 19 29 39 10 05_DGMW68A-123 20 30 40									<del></del>
8     04_UGMW63-123**     18     28     38       9     05_DGMW41A-123     19     29     39       10     05_DGMW68A-123     20     30     40					1-123DUP				
9 05_DGMW41A-123 19 29 39 10 05_DGMW68A-123 20 30 40			Ī	<u>  rj&gt;</u>					· · · · · · · · · · · · · · · · · · ·
10 05_DGMW68A-123 20 30 40					<del></del>				
			†						
Notes: Leve 32 ADR	10		·	<u> </u>		1 30	<u> </u>	140	

2.5		$\overline{}$		1
LDC	#:		166	<u>4</u> 4
SDG	#:	06	-18	OF

PB/ICB/CCB QUALIFIED SAMPLES

Page:_	6 <u>-</u> 6 <u>-</u>	
Reviewer:	Mb	
2nd Reviewer:_	9	

METHOD: Trace metals (EPA CLP SOW ILM04.0) Soil preparation factor applied:

Sample Concentration units, unless otherwise noted: Associated Samples:

umpio c	20110011BGBC	m ama, an	ioes outern	ise noteu.			Associated		4)11					
					<del></del>	- 1		8	ample identific	ation				<del></del>
Analyte	Maximum	Maximum	Maximum	Actra			APP	<del></del>				~		1
	PB ^a (mg/Kg)	PB* (ug/L)	ICB/CCB* (ug/L)	eru	4	8		7-	3	5	6	7	9	10
Al														
Sb													<u> </u>	<u> </u>
As		1.5	2.938	14.69	6,2	4.5	7.1	7.4	7.87.5	9.5	9.7	5.9	5.	4.6
Ва			2,489	12,445						·			<b> </b>	<b> </b>
Be			0,237	182										<b></b>
Cd				2.187				•		<del></del>	 			<b>}</b> -
Са			55.016	2/5.08								<u> </u>		<del> </del>
Cr ·		<u> </u>	2/70	2 20 7	<u> </u>						0.05	/ 3-		<del> </del>
Co			0.679	3.395		2.]	3.9	- 4	1.5	1.0	3.5	3.8	4,2	
Cu			1,413	7.065	3,4	<u></u>	3.1	2.4	1.3	3.5	3-3	7. 6	71-	<del> </del>
Fe .							<del> </del>	· .				<del> </del>	-	<del> </del>
Pb Mg		<u> </u>	15,607	18.035				· · · · · · · · · · · · · · · · · · ·			<del> </del>	<del> </del>	<b> </b>	<del> </del>
Mn			1,019	5.095		<del></del>	1.8	1.3	0.66	<del></del>	<del>                                     </del>		2.5	<del>                                     </del>
Hg		0.073	He of the	0.365	0,034	0.091	0.096	0,12	0.075	0.064	0.11	0,026	0.11	0.089
Ni				3,723										
ĸ ·														
Se														
Ag													<u> </u>	ļ
Na		<u> </u>	352.70	1763.5	-	<u> </u>			<u> </u>	ļ	<u> </u>	ļ		<u> </u>
n	<b></b>	<b></b>	<b> </b>	<b></b>							<del> </del>	ļ <u>.</u>	<del> </del>	<del></del>
<u> </u>	<u> </u>	ļ	<b> </b>	<b>.</b>	<u> </u>	<u> </u>	<del> </del>	<del> </del>	<del> </del>	<del> </del>			-	<del> </del>
Zn	<b></b>	<b> </b>	<b></b>	<b> </b>	ļ	<del> </del>	<del> </del>	<b></b>			-	<del> </del>	<u> </u>	<del> </del>
В	<b> </b>	<b> </b>	1 2 4 1	400		<b> </b>	<del> </del>		-	<del> </del>	<del>                                     </del>	<del> </del>	<u> </u>	<del> </del>
Мо	<b></b>	<b> </b>	0,94	4.705	<del> </del>	<del> </del>	<del> </del>	-	1	<del> </del>			ļ	<del> </del>
Sr	<u>بــــــــــــــــــــــــــــــــــــ</u>	<u> </u>	1	l dissass the si	l Societed IOB	CCP or PP -	on controller	a Pated above	with the Identific	1	Nelidation Ca	<u> </u>	l	

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

### QC Outlier Report: Field Duplicates (Non-qualified Outliers)

Lab Report Batch: 61808

Lab ID: APCL

			F	Field Sample			Field Sample Duplicate						
Analysis Method	Matrix	Analyte Name	Client Sample ID	Ana Type	Result	Lab Qualifier	Client Sample Duplicate ID	Ana Type	Result	Lab Qualifier	RPD Dup* (%)	RPD Criteria (%)	Result Units
CLP-Metal	AQ	ALUMINUM	02NEW7-123	RES	27.8	В	02NEW7-323	RES	200	U	200.0	20	ug/L
*****************	AQ	COPPER	•	RES	3.9	В		RES	2.4	В	47.6	20	ug/L
	AQ	IRON		RES	40.4	В		RES	29.3	В	31.9	20	ug/L
	AQ	MANGANESE		RES	1.8	В		RES	1.3	В	32.3	20	ùg/L
	AQ	MERCURY		RES2	0.096	В		RES2	0.12	В	22.2	20	ug/L
CLP-Metal	AQ	IRON	03_DGMW65XA-	RES	114		03_DGMW65XA-	RES	74.3	В	42.2	20	ug/L
	AQ	MERCURY		RES2	0.064	В		RES2	0.11	В	52.9	20	ug/L

*Note: Outlier report also includes analytes detected in one sample but not in the related sample, i.e., analyte was detected in the field sample but not in the field duplicate sample, or vice versa. In this case, RPD value assigned to the field duplicate sample is 200.

Project Number and Name:

6218.084 - EL TORO

Lab Report Batch: 61808

Lab ID: APCL

Client Sample ID	Lab Sample ID	Analysis Method	Matrix	Analyte Name	Lab Qualifier	Result	EDD Reporting Limit	Units
02_NEW8A-123	06-1808-4	CLP-Metal	AQ	ALUMINUM	В	21.8	200	ug/L
			• • • • • • • • • • • • • • • • • • • •	ARSENIC	В	7.3	10	ug/L
*************************	·			BARIUM	В	41.9	200	ug/L
			•••••	CHROMIUM	В	2.7	10	ug/L
			······	COPPER	В	1.5	25	ug/L
				IRON	В	22.2	100	ug/L
				MANGANESE	В	0.66	15	ug/L
				MERCURY	В	0.075	0.2	ug/L
			•	NICKEL	В	1.0	40	ug/L
	06-1808-4RE	•	·	POTASSIUM	В	1680	5000	ug/L
	06-1808-4			VANADIUM	В	5.0	50	ug/L
			,	ZINC	В	2.3	20	ug/L
02NEW7-123	06-1808-2			ALUMINUM	В	27.8	200	ug/L
				ARSENIC	В	7.1	10	ug/L
				BARIUM	В	79.9	200	ug/L
<b></b>				CHROMIUM	В	3.0	10	ug/L
)		· · · · · · · · · · · · · · · · · · ·	••••••	COPPER	В	3.9	25	ug/L
			•••••	IRON	В	40.4	100	ug/L
				MANGANESE	В	1.8	15	ug/L
				MERCURY	В	0.096	0.2	ug/L
				NICKEL	В	2.1	40	ug/L
•	06-1808-2RE			POTASSIUM	В	1930	5000	ug/L
	06-1808-2		•••••	VANADIUM	В	12.6	50	ug/L
,		CLP-VOC		CHLOROBENZENE	J	0.4	1	ug/L
				TETRACHLOROETHENE	J	0.9	1	ug/L
				TOLUENE	J	0.4	1	ug/L
02NEW7-323	06-1808-3	CLP-Metal	•••••	ARSENIC	В	7.4	10	ug/L
· · · · · · · · · · · · · · · · · · ·				BARIUM	В	80.3	200	ug/L
				CHROMIUM	В	2.6	10	ug/L
				COPPER	В	2.4	25	ug/L
				IRON	В	29.3	100	ug/L
				MANGANESE	В	1.3	15	ug/L
	•		••••	MERCURY	В	0.12	0.2	ug/L
			******	NICKEL	В	1.9	40	ug/L
	06-1808-3RE			POTASSIUM	В	1860	5000	ug/L
	06-1808-3	*******************	•••••	VANADIUM	В	12.5	50	ug/L
		*****		· • • • • • • • • • • • • • • • • • • •			<b></b>	

roject Number and Name:

6218.084 - EL TORO

Lab Report Batch: 61808

Lab ID: APCL

Client Sample ID	Lab Sample ID	Analysis Method	Matriy	Analyte Name	Lab Qualifier	Result	EDD Reporting Limit	Units
02NEW7-323	06-1808-3	CLP-Metal	AQ	ZINC	В	19.1	20	ug/L
		CLP-VOC		CHLOROBENZENE	J	0.4	1	ug/L
				TETRACHLOROETHENE	J	0.8	1	ug/L
				TOLUENE	J	0.4	1	ug/L
03_DGMW64A-123	06-1808-5	CLP-Metal		ARSENIC	В	6.2	10	ug/L
		*************		BARIUM	В	29.8	200	ug/L
				CHROMIUM	В	7.4	10	ug/L
				COPPER	В	3.4	25	ug/L
	•••••			IRON	В	37.2	100	ug/L
				MANGANESE	В	11.9	15	ug/L
				MERCURY	В	0.034	0.2	ug/L
	06-1808-5RE			POTASSIUM	В	4780	5000	ug/L
	06-1808-5			THALLIUM	В	1.9	10	ug/L
	•••••			VANADIUM	В	20.0	. 50	ug/L
03_DGMW65XA-123	06-1808-6	,		ALUMINUM	В	25.8	200	ug/L
***************************************		•••••		ARSENIC	В	9.5	10	ug/L _
		***************************************		BARIUM	В	64.2	200	ug/L
				CHROMIUM	В	6.0	10	ug/L
· · · · · · · · · · · · · · · · · · ·				COBALT	В	1.0	50	ug/L
·				COPPER	В	3.5	25	ug/L
				MERCURY	В	0.064	0.2	ug/L
	06-1808-6RE		·································	POTASSIUM	В	3840	5000	ug/L
	06-1808-6			THALLIUM	В	2.4	10	ug/L
	·······	•••••		VANADIUM	В	41.8	50	ug/L
03_DGMW65XA-323	06-1808-7			ALUMINUM	В	25.5	200	ug/L
•••••				ARSENIC	В	9.7	10	ug/L
·			•••••	BARIUM	В	63.8	200	ug/L
		•••••		CHROMIUM	В	5.3	10	ug/L
				COBALT	В	0.85	50	ug/L
		•••••		COPPER	В	3.5	25	ug/L
				IRON	В	74.3	100	ug/L
		*******************		MERCURY	В	0.11	0.2	ug/L
	06-1808-7RE		•••••	POTASSIUM	В	3890	5000	ug/L
	06-1808-7			THALLIUM	В	2.9	10	ug/L
				VANADIUM	В	40.8	50	ug/L
04_DGMW66A-123	06-1808-8		••••••	ARSENIC	В	5.9	10	ug/L
·								• • • • • • •

Lab Report Batch: 61808

Lab ID: APCL

Client Sample ID	Lab Sample ID	Analysis Method	Matric	Analyte Name	Lab Qualifier	Result	EDD Reporting Limit	Units
04_DGMW66A-123	06-1808-8	CLP-Metal	AQ	BARIUM	B	74.4	200	ug/L
04_0011110011120				CHROMIUM	В	4.9	10	ug/L
				COBALT	B	1.2	50	ug/L
				COPPER	B	3.8	25	ug/L
••••				MERCURY	B	0.026	0.2	ug/L
	······			SELENIUM	B	3.5	5	ug/L
				THALLIUM	В	2.7	10	ug/L
	***************************************				В	18.9	50	<u></u>
				VANADIUM				ug/L
04_UGMW63-123	06-1808-9			ALUMINUM	В	19.3	200	ug/L
		·		ARSENIC	В	4.5	10	ug/L
				BARIUM	В	76.2	200	ug/L
				CHROMIUM	В .	3.8	10	ug/L
	******			COBALT	В	2.1	50	ug/L
				COPPER	В	5.0	25	ug/L
			: 	IRON	В	29.5	100	ug/L
)	,			MERCURY	В	0.091	0.2	ug/L
	06-1808-9RE			POTASSIUM	В	3820	5000	ug/L
	06-1808-9			THALLIUM	В	3.0	10	ug/L
				VANADIUM	В	13.9	50	ug/L
		• • • • • • • • • • • • • • • • • • • •		ZINÇ	В	9.3	20	ug/L
05_DBMW41A-123	06-1808-10			ALUMINUM	В	40.6	200	ug/L
		••		ARSENIC	В	5.1	10	ug/L
***************************************				BARIUM	В	59.1	200	ug/L
	•	· · · · · · · · · · · · · · · · · · ·		CHROMIUM	В	3.7	10	ug/L
	••••••			COPPER	В	4.2	25	ug/L
				IRON	В	43.5	100	ug/L
		· · · · · · · · · · · · · · · · ·		MANGANESE	В	2.5	15	ug/L
	•••••	· · · · · · · · · · · · · · · · · · ·		MERCURY	В	0.11	0.2	ug/L
		•••		NICKEL	В	4.5	40	ug/L
	06_1808_10PF		••••		B		5000	
	06-1808-10RE 06-1808-10		·	THALLIUM	B	2890	10	ug/L ug/L
	00-1000-10				B	10.4	50	
·		0151/06		VANADIUM  PROMODICULOPOMETUANE				ug/L
		CLP-VOC		BROMODICHLOROMETHANE	J	0.5	1	ug/L
05_DGMW68A-123	06-1808-11	CLP-Metal		ALUMINUM	B	32.4	200	ug/L
	· .			ARSENIC	В	4.6	10	ug/L
				BARIUM	В	24.7	200	ug/L

loject Number and Name:

6218.084 - EL TORO

Lab Report Batch: 61808

Lab ID: APCL

Client Sample ID	Lab Sample ID	Analysis Method	Matrix	Analyte Name	Lab Qualifier	Result	EDD Reporting Limit	Units
05_DGMW68A-123	06-1808-11	CLP-Metal	AQ	CHROMIUM	В	3.8	10	ug/L
				COPPER	В	9.1	25	ug/L
•••••				IRON	В	51.8	100	ug/L
	••••••			MANGANESE	В	5.2	15	ug/L
				MERCURY	В	0.089	0.2	ug/L
		'		NICKEL	В	6.1	40	ug/L
	06-1808-11RE	·	••••••	POTASSIUM	В	3150	5000	ug/L
	06-1808-11			VANADIUM	В	11.4	50	ug/L
		CLP-VOC		BROMODICHLOROMETHANE	J	0.6	1	ug/L
BT1-923	06-1808-12		••••••	METHYLENE CHLORIDE	J	0.3	5	ug/L

# **Enclosure II**

# **EPA Level IV Validation Reports**

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 16, 2006

LDC Report Date:

April 4, 2006

Matrix:

Water

Parameters:

Volatiles

**Validation Level:** 

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1808

Sample Identification

03 DGMW64A-123

04 UGMW63-123

04 UGMW63-123MS

04_UGMW63-123MSD

#### Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Contract Laboratory Program Statement of Work (SOW) OLM04.1 for Volatiles.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999); the following subsections correlate to the above guidelines.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
3/20/06	Dichlorodifluoromethane Chloroethane 2-Butanone Carbon tetrachloride 1,2-Dichloropropane 2-Hexanone	26.2 32.7 65.7 29.8 40.5 27.0	All samples in SDG 06-1808	J (all detects) UJ (all non-detects)	Α

All of the continuing calibration RRF values were within validation criteria.

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

No field blanks were identified in this SDG.

#### VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the SOW. All surrogate recoveries were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Compound	Flag	A or P
06G1410MB01	1,2-Dichloroethane-d4	115 (76-114)	All TCL compounds	J (all detects)	Р

#### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VIII. Laboratory Control Samples (LCS)

Although laboratory control samples were not required by the method, laboratory control samples were reported by the laboratory. Percent recoveries (%R) were within QC limits.

### IX. Regional Quality Assurance and Quality Control

Not applicable.

#### X. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XI. Target Compound Identifications

All target compound identifications were within validation criteria.

#### XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

#### XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria.

#### XIV. System Performance

The system performance was within validation criteria.

## XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

## XVI. Field Duplicates

No field duplicates were identified in this SDG.

## MCAS El Toro, CTO 084 Volatiles - Data Qualification Summary - SDG 06-1808

SDG	Sample	Compound	Flag	A or P	Reason
06-1808	03_DGMW64A-123 04_UGMW63-123	Dichlorodifluoromethane Chloroethane 2-Butanone Carbon tetrachloride 1,2-Dichloropropane 2-Hexanone	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)

MCAS El Toro, CTO 084 Volatiles - Laboratory Blank Data Qualification Summary - SDG 06-1808

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084 Volatiles - Field Blank Data Qualification Summary - SDG 06-1808

No Sample Data Qualified in this SDG

LDC #: 14786A1 VALI	DATION COMPLETENESS WORKSHEET	Date: <u>4/3/06</u>
SDG #: 06-1808	Level† <del>III/IV -</del>   V	Page: <u>//</u> of_/
Laboratory: Applied Physics & Chemis	try Laboratory	Reviewer:
		2nd Reviewer:
METHOD: GC/MS Volatiles (EPA CLP	SOW OLM04.1)	
		•

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times		Sampling dates: B/16/0-6
II.	GC/MS Instrument performance check	♠	, ,
111.	Initial calibration	A	•
IV.	Continuing calibration	m	
V.	Blanks	4	
VI.	Surrogate spikes	W/	
VII.	Matrix spike/Matrix spike duplicates	♠	NOMS/MSD fu #7 None /7
VIII.	Laboratory control samples	$\triangleleft$	109
IX.	Regional Quality Assurance and Quality Control	N	
<i>ι</i> Χ	Internal standards	<u> 4</u>	
XI.	Target compound identification	<u> </u>	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	_ ₩	Not reviewed for Level III validation.
XIII.	Tentitatively identified compounds (TICs)	4	Not reviewed for Level III validation.
XIV.	System performance	4	Not reviewed for Level III validation.
XV.	Overall assessment of data	#	
XVI.	Field duplicates	XV N	D=6+7.2+3.
XVII.	Field blanks	WIN	13-12

Note:	A = Acceptable	ND = No compounds detected	d D = Duplicate
	N = Not provided/applicable	R = Rinsate	TB = Trip blank

EB = Equipment blank SW = See worksheet FB = Field blank

Validated Samples. Indicates sa	ample underwent Level IV Validation		
1 / 01_MW201-1237	11 05_DGMVV68A-123	21 06 414 10MBO	31
2, 02NEW7.123	12 1211-923	21 106 414 10MB0   22 HGH 19MB0	32
3 02NEW7-383	13 04_UGMW63-123MS	23	33
4 402_NEW8A-123	14 04_UGMW63-123MSD	24	34
5 03_DGMW64A-123**	15	25	35
6 DGMW65XA-123	16	26	36
72 03_DGMW65XA-323	17	27	37
8 04_DGMW06A-123	18	28	38
9 04_UGMW63-123**	19	29	39
10 05 <u>-DGMW41A-123-</u>	20	30	40

## TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846-Method-8260B)-

A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane	
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyi alcohol	
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile	
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein	
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile	
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane	
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol	
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile	
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile	
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	ILL 1.1.2 Tuchtrotrifluoroethans	
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS, o-Xylene	мммм.	
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNN.	
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.	
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.	
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	2020.	
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.	
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	ssss.	
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF, 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	тт.	
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.	
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB, tert-Amyl methyl ether	vvv.	

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

LDC #: 147864| SDG #: 06-1828

### **VALIDATION FINDINGS CHECKLIST**

	Page:_	of	<u>ئے</u>
	Reviewer:_	9	<u> </u>
2nd	Reviewer:_	_^^	$\overline{}$
	_	丁、	Ī

네. 코 Method: Volatiles (EPA CLP SOW OLM0<del>8.1</del>)

Validation Area	Yes	No	NA	Findings/Comments
Li Technical holding times				
All technical holding times were met.	1	<u>  -                                   </u>		
Cooler temperature criteria was met.	/			<b>'</b>
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/			1
Were all samples analyzed within the 12 hour clock criteria?	/			
開: Iprilal salibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) $\leq$ 30% and relative response factors (RRF) $\geq$ 0.05?		}		
IV: Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) $\leq$ 25% and relative response factors (RRF) $\geq$ 0.05?				
V Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI; Sunagate spikes				
Were all surrogate %R within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?		/		
VII. Matrix splke/Metrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
JIII. Laboratory control samples	•			
Nas an LCS analyzed for this SDG?				
Was an I CS analyzed per analytical batch?				



## VALIDATION FINDINGS CHECKLIST

Page: 2 of Seviewer: 2nd Reviewer: 9

Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?  [X: Regional Quality Assurance and Quality Control	/	-	Т		
V. Dispersal Challer Assurance and Challer Control			-		
INC DESIGNATION AGENT ADDRESS OF THE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE ACCURATE AC					
Were performance evaluation (PE) samples performed?		1	1		
Were the performance evaluation (PE) samples within the acceptance limits?			-		1
X, Internal standards					
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/				
Were retention times within $\pm$ 30 seconds of the associated calibration standard	1				•
XI. Terget compound identification					
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	1	1	1	_	
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	1	_	$\bot$	$\sqcup$	
Were chromatogram peaks verified and accounted for?	<u>                                     </u>				,
XIII: Compound quantitistion/CRQLs					
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?					
XIB: Tentatively identified:compounds (FICs)					
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?					
Were relative intensities of the major ions within $\pm$ 20% between the sample and the reference spectra?			/	1	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?					
XIV: System performance:					
System performance was found to be acceptable.	1				
KV. Oversil assessment of clara					
Overall assessment of data was found to be acceptable.				$\int$	
CVI: Field duplicates					
Field duplicate pairs were identified in this SDG.	1			T	
arget compounds were detected in the field duplicates.					

LDC #:_147	86A1	
SDG #: 06		

## **VALIDATION FINDINGS CHECKLIST**

	Page:_ Reviewer:	3013
2nd	Reviewer:	1

Validation Area	Yes	No	NA	Findings/Comments
XVII; Field:blanks				
Field blanks were identified in this SDG.	/	· \.		
Target compounds were detected in the field blanks.	1			

LDC #:1

## VALIDATION FINE GS WORKSHEET Continuing Calibration

2nd Reviewer:

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

$\frac{1}{N}$ Were all percent differences (%D) $\leq$ 25% and relative response factors (RRF) $\geq$ 0.05	Y(N)N/A	Were all percent differences	(%D) < 25% and relative response	factors (RRF) $> 0.05$ ?
------------------------------------------------------------------------------------------------------------	---------	------------------------------	----------------------------------	--------------------------

#	Date	Standard ID	Compound	Finding %D (Limit: ≤25.0%)	Finding RRF (Limit: <u>&gt;</u> 0.05)	Associated Samples	Qualifications
	3/20/06	£141020/	77	26.2		1-6.8-14-5	1/UT SERA
	/ /	\	D	32.		065 HIOMBO/	/ /
			M	65.7		9.13-14	·
			0.8	29.8		/	
			<u>&amp;</u> Z	40.5			1/
				27.0			V
		·	<u> </u>		0.390 ( < 0.30)		Nove SP
	<u> </u>	· .	<b>BB</b> *		0.257 V		
	3/21/06	£41920	D	39.8		T. 065-1419 MBO	1/W/A
			V	X 85.1			
			0.10	260			
			a	38.9			
		<u> </u>	<b>*</b>		7272(203)		
			783		03/3		
						•	
*			•				
				•		•	
		•			· -		
		* ccc	cods.	outil after	at < 20	+-	

LDC	#:418	641
SDG	#: <u>06</u> -	1808

## **VALIDATION FINDINGS WORKSHEET Surrogate Spikes**

Page:_	
Reviewer:	<u>'</u>
nd Reviewer:	Q

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A

Were all surrogate %R within QC limits listed below?

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

#	Date	Lab ID/Reference	Surrogate	%Recovery (Limits)	Associated Samples	Qualifications
		0644104B01	DCE	115 (76-14)		Wets P
				( ' )		
				( )		
				( )	·	
				( )		
	··			( )		
				( )		
				( )		
				( )		
				( )		
				( )		
				( )		
				( )		
				( )		
		Å.		. ( )		
				( )		
				( )		
				( )		
				( )		
				( )		
				( )	*	
				( )		
				( )		
				( )		

	QC Limits (Soil)	QC Limits (Water)
SMC1 (TOL) = Toluene-d8	84-138	88-110
SMC2 (BFB) = Bromofluorobenzene	59-113	86-115
SMC3 (DCE) = 1.2-Dichloroethane-d4	70-121	76-114



LDC #: <u>14</u> 7	8601
SDG #: 06	8081-

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	$\bigcirc$
Page:_	
Reviewer:_	<del></del>
2nd Reviewer:	L_

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF =  $(A_s)(C_s)/(A_s)(C_s)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)  $A_x$  = Area of compound,

ompound (

A. = Area of associated internal standard

 $C_x$  = Concentration of compound,

C_k = Concentration of internal standard

S = Standard deviation of the RRFs

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF ( [ <i>[]</i> std)	RRF	Average RRF (Initial)	Average RRF (initial)	%RSD	%RSD
1	10AZ	12/0/1/	Methylene chloride (1st internal standard)	1.996	1.996	2.087	2.087	4.90	489
	1-71-	1/2/07	Trichlorethene (2nd internal standard)	0.294	0.294	0.303	0.303	6.72	6,70
		·	Toluene (3rd internal standard)	1.507	1.507	1.578	1.518	4.46	4.46
2			Methylene chloride (1st internal standard)				·		
		• .	Trichlorethene (2nd Internal standard)						
			Toluene (3rd internal standard)						
3			Methylene chloride (1st internal standard)		· .			-	
			Trichlorethene (2nd internal standard)					,	
			Toluene (3rd internal standard)						
4			Methylene chloride (1st internal standard)						
			Trichlorethene (2nd internal standard)						
			Toluene (3rd internal standard)						

Comments: .	Refer to	Initial	Calibration find	<u>dings work</u>	sheet for li	st of c	qualifications	and	associated	samples	when	reported	results	do not	agree	within	10.0%	of the
recalculated	results.																	

LDC #: 47864	
SDG #16-1808	

## VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	of	4
	Reviewer:_	a	
2nd	Reviewer:	Q	
	_	$\overline{}$	

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_{s})(C_{ls})/(A_{ls})(C_{s})$ 

RRF = continuing calibration RRF

A, = Area of compound,

A_k = Area of associated internal standard

C, = Concentration of compound,

C_b = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	6410 QOI	3/20/06	Methylene chloride (1st internal standard)	2087	2.144	2.14	2.7	2.7
			Trichlorethene (2nd internal standard)	0.303	0.290	0.290	4.5	44
			Toluene (3rd internal standard)	1.518	1.670	1.670	10.0	10.0
2			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)					
3			Methylene chloride (1st internal standard)					
	•		Trichlorethene (2nd internal standard)					
	·	<u> </u>	Toluene (3rd internal standard)	1				
4			Methylene chloride (1st Internal standard)					
		1	Trichlorethene (2nd internal standard)					
		İ	Toluene (3rd internal standard)					

Comments:	Refer to Continuing	Calibration findings	worksheet for li	st of qualifications	and associated sa	mples when r	eported results	<u>do not agree with</u>	in 10.0%
of the recalc	ulated results.							·	







LDC #: 147864 | SDG #: 06-1808

## VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

_/of/
۵
<u></u>

ETHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent recoveries (%R) of surrogates were recalculated for ti	he compounds identified below using the following calculation:
--------------------------------------------------------------------	----------------------------------------------------------------

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: 5

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
,			Reported	Recalculated	
Toluene-d8	10	10.02	100	100	0
Bromofluorobenzene		9.53	96	95	1
1,2-Dichloroethane-d4	7V	10.TS	108	108	0

Sample ID:___

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
	·	·	Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					

ےٰample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
<u>.</u>			Reported	Recalculated	
Toluene-d8					
Bromofluoroberzene					
1,2-Dichloroethane-d4					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8			·		
Bromofluorobenzene			·		·
1,2-Dichloroethane-d4				· ·	

Sample ID:_

·	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8				•	
Bromofluorobenzene	·	·			
1,2-Dichloroethane-d4					

LDC #: 4786A SDG #: 08-1808

## VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where:

SSC = Spiked sample concentration SA = Spike added

SC = Sample concentration

RPD = I MSC - MSDC I * 2/(MSC + MSDC)

MSC = Matrix spike percent recovery

MSDC = Matrix spike duplicate percent recovery

MS/MSD sample: 13/

		ike	Sample	Spiked Sample				Matrix Spike Duplicate		MS/MSD			
Compound		ded ナム)	Concentration	Concentration		Percent Recovery		Percent Recovery		Percent R	ecovery	R	מפ
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated		
1,1-Dichloroethene	(0	10	ND	art	10.2	98	98	102	102	4	4		
Trichloroethene		}		9.65	10.0	-97	97	100	100	3	3		
Benzene				9.81	10 A	48	98	104	104	6	6		
Toluene	,			9.80	9.85	98	98	99	99	1	1		
Chlorobenzene		V	V	9.66	9.6T	97	at	17	97	0	0		

Comments: Refer to Matrix Spike/Matri	x Spike Duplicates	findings worksheet	for list of qualification	<u>ations and associated</u>	samples when report	<u>ed results do not agree within</u>
10.0% of the recalculated results.			•			
10,000		· · · · · · · · · · · · · · · · · · ·				







LDC #:147866 DG #:06-1808

**%**S

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	
Reviewer:_	
2nd reviewer:_	0

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Percent solids, applicable to soils and solid

matrices only.

TYN N/A Were all reported results recalculated and verified for all level IV samples?

Y/N N/A Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example: Concentration = (A.)(L)(DF) (A,)(RRF)(V,)(%S) Sample I.D. ____5 Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Conc. = (12123)(10)( (32133)(3.672)(= (0.3)Amount of Internal standard added in nanograms (ng) RRF Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) or grams (g). Df Dilution factor.

#	Sample ID	Compound	Reported Concentration ( )	Calculated Concentration ( )	Qualification
				·	
· -					
	·			·	
					· · · · · · · · · · · · · · · · · · ·
	·				
		·			
				·	

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 16, 2006

**LDC Report Date:** 

April 1, 2006

Matrix:

Water

Parameters:

Metals

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1808

Sample Identification

03_DGMW64A-123 04_UGMW63-123

#### Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Contract Laboratory Program Statement of Work (SOW) for Inorganic Analysis, Multi-media, Multi-concentration, D.N. ILM04.2 for TAL Metals including Molybdenum.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) and incorporates updates per EPA SOW (D.N. ILM04.2); the following subsections correlate to the guidelines.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

All criteria for the initial calibration were met.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

CRDL standards for ICP and AA were analyzed and reported as required.

Instrument detection limits, interelement corrections and linear range analysis were performed at the required frequency.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Arsenic Mercury	1.5 ug/L 0.073 ug/L	All samples in SDG 05-4158
ICB/CCB	Arsenic Barium Beryllium Cadmium Calcium Cobalt Copper Magnesium Manganese Sodium Molybdenum	2.938 ug/L 2.489 ug/L 0.237 ug/L 0.437 ug/L 55.016 ug/L 0.679 ug/L 1.413 ug/L 15.607 ug/L 1.019 ug/L 352.701 ug/L 0.941 ug/L	All samples in SDG 05-4158

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample ID	Analyte	Reported Concentration	Modified Final Concentration 6.2U ug/L 3.4U ug/L 0.034U ug/L	
03_DGMW64A-123	Arsenic Copper Mercury	6.2 ug/L 3.4 ug/L 0.034 ug/L		
04_UGMW63-123	Arsenic Cobalt Copper Mercury	4.5 ug/L 2.1 ug/L 5.0 ug/L 0.091 ug/L	4.5U ug/L 2.1U ug/L 5.0U ug/L 0.091U ug/L	

No field blanks were identified in this SDG.

#### IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

#### V. Matrix Spike Analysis

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable.

#### VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### VIII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

#### IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

#### X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

## XI. Sample Result Verification

All sample result verifications were acceptable.

## XII. Overall Assessment of Data

Data flags have been summarized at the end of this report if data has been qualified.

## XIII. Field Duplicates

No field duplicates were identified in this SDG.

## MCAS El Toro, CTO 084 Metals - Data Qualification Summary - SDG 06-1808

## No Sample Data Qualified in this SDG

## MCAS El Toro, CTO 084 Metals - Laboratory Blank Data Qualification Summary - SDG 06-1808

SDG	Sample ID	Analyte	Modified Final Concentration	A or P
06-1808	03_DGMW64A-123	Arsenic Copper Mercury	6.2U ug/L 3.4U ug/L 0.034U ug/L	Α
06-1808	04_UGMW63-123	Arsenic Cobalt Copper Mercury	4.5U ug/L 2.1U ug/L 5.0U ug/L 0.091U ug/L	A

MCAS El Toro, CTO 084 Metals - Field Blank Data Qualification Summary - SDG 06-1808

No Sample Data Qualified in this SDG

SDG	C#: 14786A4 VALIDATION COMPLETENESS WORKSHEET  G#: 06-1808 Level III/IV  poratory: Applied Physics & Chemistry Laboratory							HEET		Date: 3 3	<u>-</u> -(
MET	METHOD: Dissolved Metals (EPA CLP SOW ILMO4.∮)							,	2nd	Reviewer:	7
The s	samples listed below were ation findings worksheets	e revi	ewed for ead	ch of the f	ollowing	validatio	n areas. \	Validation fi	ndings are	/ e noted in attac	hed
	Validation	Area						Comment	s		
1.	Technical holding times		•	A	Sampling	dates:	3/16/06	)			
11.	Calibration			A			7				
111.	Blanks			SW							
IV.	ICP Interference Check Sar	nple (l	CS) Analysis	A							
V.	Matrix Spike Analysis			A	) M5	Taro					
VI.	Duplicate Sample Analysis			A	7	<u> </u>					
VII.	Laboratory Control Samples	(LCS	)	A	La	, Z					
VIII	. Internal Standard (ICP-MS)			Ų	2 1/1	- util	red '				
IX.	Furnace Atomic Absorption	QC		Ŋ	>		<b>a</b> ::				
X.	ICP Serial Dilution			A							
XI.	Sample Result Verification			_A	Not revi	wed for Le	vel III valid	ation.			
XII.	Overall Assessment of Data	1		A							
XIII	Field Duplicates			N							
XIV	. Field Blanks			N							
Note:	A = Acceptable N = Not provided/applicabl SW = See worksheet	e R	= Rinsate	compounds		TB = Trip t	D = Duplica blank EB = Equipa				
Valida	ted Samples: ** Indicates sam	ple un	derwent Level I	V validation							
1	02NEW7-123	11	02NEW7-123	MS	21			31			
2	02NEW7-323 >	12	02NEW7-123	MSD	22			32			
3	02_NEW8A-123	13	<del>02NEW</del> 7-123	DUP	23			33			
4	03_DGMW64A-123**	14	05_DGMW68	A-123MS	24			34			
5	03_DGMW65XA-123	15	95_DGMW68	A-123M3D	<u> </u>			35			
6	03_DCMW65XA-323_	16	05_DGMW88	A-123DUP	26			36			
7	<del>04_DGMW66A-12</del> 3	17	PB		27			37			
8	04_UGMW63-123**	18			28			38			
9	05_DGMW41A-123-	19			29			39			
10	05_DGMW68A-123	20_			30			40			
Notes	s:  ene  3 = ADR									<del></del>	

LDC #:	14186A4
SDG #:	196-1808

#### **VALIDATION FINDINGS CHECKLIST**

	Page:_	Lot 2
	Reviewer:_	MH-
2nd	Reviewer:	

## Method: Metals (EPA SOW ILM04.0)

Validation Area	Yes	No	NA	Findings/Comments
i. Technical holding times				
All technical holding times were met.	V	<u> </u>	<u> </u>	
Cooler temperature criteria was met.	10			
II. Calibration				
Were all instruments calibrated daily, each set-up time?	V			
Were the proper number of standards used?	1			
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury and 85-115% for cyanide) QC limits?	1			
Were all initial calibration correlation coefficients ≥ 0.995?	1			
Was a midrange cyanide standard distilled?			1	
III), Blanks				
Was a method blank associated with every sample in this SDG?	1			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	V			
IV; ICP Interference Check Sample				
Were ICP interference check samples performed as required?	1			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/			
V. Matrix spikes				
Was a matrix spike (MS) analyzed for each matrix in this SDG? If no, Indicate which matrix does not have an associated MS. Soil / Water.	1			
Were the MS percent recoveries (%R) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.				
VI. Duplicate Analyses				
Was a duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated DUP. Soil / Water.	Í			·
Were the duplicate relative percent differences (RPD) $\leq$ 20% for waters and $\leq$ 35% for soil samples? A control limit of $\leq$ CRDL( $\leq$ 2X CRDL for soil) was used for samples that were $\leq$ 5X the CRDL, including when only one of the duplicate sample values were $\leq$ 5X the CRDL.				
VII. Laboratory control samples				
Was an LCS anaylzed for this SDG?	7		$\Box$	
Was an LCS analyzed per extraction batch?	1			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	/			

#### **VALIDATION FINDINGS CHECKLIST**

Page: 2 of 2 Reviewer: 417 2nd Reviewer: _____

Validation Area	Yes	No	NA	Findings/Comments
VIII. Internet Standards (Method 200.8)				
Were all the percent recoveries (%R) within the 60-125% of the intensity of the internal standard in the associated initial calibration?			1	
If the %Rs were outside the criteria, was a reanalysis performed?			1	
IX: Furnace Atomic Absorption QC				
If MSA was performed, was the correlation coefficients ≥ 0.995?		·	1	
Do all applicable analysies have duplicate injections?	<u> </u>		1	
For sample concentrations > CRDL, are applicable duplicate injection RSD values < 20%?			/	
Were analytical spike recoveries within the 85-115% QC limits?			1	
X ICP Sarial Dilution				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the IDL?	2			
Were all percent differences (%Ds) ≤ 10%?	/			
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.		·	1	,
XI: Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			7	
Were the performance evaluation (PE) samples within the acceptance limits?			1	
XII. Sample Result Verification				
Were CRDLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	1			
Were results within the linear range of the ICP?				
XIII, Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target analytes were detected in the field duplicates.			7	
KV. Field blanks				
Field blanks were identified in this SDG.		1		
Target analytes were detected in the field blanks.				

LDC #: 14786A4 SDG #: 06-1808

## VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page:	1 of 1
Reviewer:	Mo
2nd reviewer:_	-0
· ·	7

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
1-10	A2	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
10113		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Ag, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
14.16	V	/AI, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mg, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Π, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
·		Al, Sb, As, Be, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni; K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, NI, K, Se, Ag, Na, TI, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al. Sb. As. Ba. Be, Cd, Ca, Cr, Co, Cu. Fe. Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN.
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al. Sb. As. Ba, Be, Cd. Ca, Cr. Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	<u>.</u>	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ní, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN',
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
ICP Trace	t	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn) Hg (Ni, K, Se, Ag, Na, Ti, V, Zn, Mo) B, Si, CN',
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN',
GFAA		Al, Sb. As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,

Comments: Mercury by CVAA if performed

LDC #:	14186A4
SDG #:	AL-1808

#### **VALIDATION FINDINGS WORKSHEET** PB/ICB/CCB QUALIFIED SAMPLES

Page:	of
Reviewer:	MID
2nd Reviewer:	Q

METHOD: Trace metals (EPA CLP SOW ILM04.0) Soil preparation factor applied:
Sample Concentration units, unless otherwise noted:

Asso Associated Samples:

				vise noted.	4/			Samples						
	<del></del> -1						4 5 5	S	ample identifi	cation	ı	г	T	1 /
Analyte	PB*	PB"	Maximum ICB/CCB*		4	8	APR	۵_	,	5	6	7	9	10
	(mg/Kg)	(ug/L)	(ug/L)	en	T				3	<u> </u>	p	<u> </u>	<del> </del>	10
Al									<u> </u>				<u> </u>	
Sb					,				ļ				<u> </u>	
As		1.5		14.69	6,2	4.5	7.1	7.4	7.8	9.5	9.7	5.9	5.1	4.6
Ва			2,489	12,445										
Ве				(-182				i						
Cd			0.437	2.185									<u> </u>	
Ca			55.016	25.08									<u> </u>	·
Cr									·.					
Co			0.679	3.395		2.1				1,0	0.85	1,2	<u> </u>	l
Cu			1,413	7.065	3,4	C.0	3.9	2.4	1.5	3.5	3.5	3.8	4,2	
Fe														
РЬ														
Mg			15.607	78.035										
Mn				5.095			1.8	1.3	0.66				2.5	
Hg		0.073		0.365	0,034	0.091	0.096	0,12	0.075	0.064	0.11	0,026	0.11	0.089
Ni														
κ														
Se														
Ag														
Na			352.70	1763.5										
Π														
v														
Zn														
В								· · · · · · · · · · · · · · · · · · ·		<u> </u>				
Мо			0,94)	4.705				7				1		
					codeted ICB							·		

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

KSMP.4C4

## **VALIDATION FINDINGS WORKSHEET** Initial and Continuing Calibration Calculation Verification

	) '
Page:_	
Reviewer:_	MH
2nd Reviewer:	2

METHOD: Trace metals (EPA CLP SOW ILM04.0)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

 $%R = Found \times 100$ True

Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	Assemble
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
IN	ICP (Initial calibration)	Ac	9733	100000	97.3	97.3	Ч
	GFAA (Initial calibration)						
IW	CVAA (Initial calibration)	Wz	8,143	7.5	[108.6	(08.6	· 4
cW	ICP (Continuing calibration)	V	2032	2000	10/16	10/16	7
	GFAA (Continuing calibration)	·					
COV	CVAA (Continuing calibration)	Uş	4,535	5.0	90.7	90.7	Y
	Cyanide (Initial calibration)	•					
	Cyanide (Continuing calibration)						

Comments:	Refer to Calib of the recalcu	Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.										
	·	<del></del>					<u> </u>					
	<u> </u>			,								
	· · · · · · · · · · · · · · · · · · ·											

### **VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet**

Reviewer 2nd Reviewe

METHOD: Trace metals (EPA CLP SOW ILM04.0)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100 True

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$ 

Where, S= Original sample concentration

(S+D)/2

D= Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $%D = II-SDRI \times 100$ 

Where,

Initial Sample Result (ug/L)

Serial Dilution Result (ug/L) (Instrument Reading x 5)

·	·		Found / S / I	True / D / SDR (units)	Recalculated	Reported	Assertable
Sample ID	Type of Analysis	Element	(units)	True / D / SDR (units)	%R/RPD/%D	%R / RPD / %D	Acceptable (Y/N)
Zuag	ICP interference check	¥;	918,3	1000	91.8	91.8	· Y
· LUY	Laboratory control sample	140	507	700	(0)	[2]	
. (1	Matrix spike	se	(SSR-SR)	(0	90	90	
13	Duplicate	Zn	113.1	1045	1,2	1.2	/
-(1	ICP serial dilution	Ca	115.5	(17.9	6-4	6.4	J .

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

OTCLC.4C4

LDC #:	1478644
SDG #:	06-1808

%S

## **VALIDATION FINDINGS WORKSHEET Sample Calculation Verification**

Page:	of
Reviewer:	MY
2nd reviewer:	O
	7

METHOD: Trace metals (EPA CLP SOW ILM04.0)

Decimal percent solids

Have results been reported and calculated correctly?

(Y) N N/A (Y) N N/A Are results within the calibrated range of the instruments and within the linear range of the ICP?

Y) N N/A Are all detection limits below the CRDL?

Detected analyte results forfollowing equation:			w	were recalculated and verified using th		
Concenti	ration =	(RD)(FV)(Dil) (In. Vol.)(%S)	Recalculation:	Lt		
RD	=	Raw data concentration	From the new			
FV	=	Final volume (ml)		1 !		
In. Vol.	=	Initial volume (ml) or weight (G)	Vi = 0,2215 mg/	>>1-5 of 1.		
Dii	=	Dilution factor	70	V(2		

#	Sample ID	Analyte	Reported Concentration ( U4/L )	Calculated Concentration ( Uf / )	Acceptable (Y/N)
	4	As	6.2	6.2	9
		Ba	29.8	29.8	1
<u>/</u>		Ca	61500	61500	
`-		- Cr	7.4	7.4	
		Gu	3,4	3,4	
		Fe	37.2	37.2	
		My	4/000	41000	
		My	11.9	11.9	
			0,034	0,034	
		<u> </u>	28.9	28.9	
		Vì	777	222	
		k	4780	4780	
		S.e.	9,3	9.2	
		Na	197000	197000	
		Te	1.9	1-9	
		V	20,0	20.0	
		Zn	512	512	<u> </u>
		<del></del>	·		
			·		

# Laboratory Data Consultants, Inc. Data Validation Report

**Project/Site Name:** 

MCAS El Toro, CTO 084

**Collection Date:** 

March 16, 2006

**LDC Report Date:** 

April 1, 2006

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1808

Sample Identification

01_MW201-123 03 DGMW64A-123

03_DGMW64A-123DUP

#### Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0M for Perchlorate, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, and Sulfate, and EPA Method 310.1 for Alkalinity.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A table summarizing all data qualification is provided at the end of this report. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

#### a. Initial Calibration

All criteria for the initial calibration of each method were met.

#### b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the method blanks.

No field blanks were identified in this SDG.

#### IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
03_DGMW64A-123	Chloride Nitrate as N Sulfate	No MS associated with these samples.	MS required.	None None None	Р
01_MW201-123	Perchlorate	No MS associated with these samples.	MS required.	None	Р

Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable with the following exceptions:

Sample	Analyte	Finding	Criteria	Flag	A or P
03_DGMW64A-123	Chloride Nitrate as N Sulfate	No DUP associated with these samples.	DUP required.	None None None	P
01_MW201-123	Perchlorate	No DUP associated with these samples.	DUP required.	None	P

Relative percent differences (RPD) were within QC limits.

### VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VII. Sample Result Verification

All sample result verifications were within validation criteria.

#### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### IX. Field Duplicates

No field duplicates were identified in this SDG.

#### MCAS El Toro, CTO 084 Wet Chemistry - Data Qualification Summary - SDG 06-1808

SDG	Sample	Analyte	Flag	A or P	Reason
06-1808	03_DGMW64A-123	Chloride Nitrate as N Sulfate	None None None	Р	Matrix spike analysis
06-1808	01_MW201-123	Perchlorate	None	Р	Matrix spike analysis
06-1808	03_DGMW64A-123	Chloride Nitrate as N Sulfate	None None None	P	Duplicate sample analysis
06-1808	01_MW201-123	Perchlorate	None	Р	Duplicate sample analysis

MCAS El Toro, CTO 084 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 06-1808

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084 Wet Chemistry - Field Blank Data Qualification Summary - SDG 06-1808

No Sample Data Qualified in this SDG

	SDG	#: 14786A6 VALIDATION COMPLETENESS WORKSHEET  #: 06-1808 Level III/IV ratory: Applied Physics & Chemistry Laboratory						HEET		Date:_3 Page:_1 viewer: viewer:	_of
	Meth	HOD: (Analyte) Alkalini od 300.0M), TDS (EPA I samples listed below wer ation findings worksheets	Metho e revi	d 160.1)			<del></del>	v			
•		Validation	ı Area			,		Comments			
	1.	Technical holding times			A	Sampling d	ates: 3/16/06				
	lla.				A						
	llb.	Calibration verification			Α						
	III.	Bianks			A						
	ΙV	Matrix Spike/Matrix Spike [	Duplicat	es	N	2 No	Mes / Days for	ce NO3-N	504 Z	houp	2-4
	v	Duplicates			N	,		ilou	home /p	#/_	
	VI.	Laboratory control samples			A	LCS/L	USD				
	VII.	Sample result verification			Æ	Not review	ed for Level III validat	tion.			
	VIII	Overall assessment of data	1	,	A		•	<u>.</u>			
	IX.	Field duplicates			N,			· .	·	<u> </u>	
	x	Field blanks			N	<u> </u>					
) ,	N = Not provided/applicable R = Rins			o compound sate eld blank	s detected	D = Duplicate TB = Trip blar EB = Equipm	nk	•			
,	/alida	ted Samples; ** Indicates sam	ple und	ierwent Level I	V validation					·	
	1_	01_MW201-123**	11			21		31			
	2	03_DGMW64A-123**	12			22		32			
	3	03_DGMW65XA-123-	13			23	· · · · · · · · · · · · · · · · · · ·	33			
	4	03_DGMW65XA-323	14			24		34			
	5	01_MW201-123MS	15			25		35	<del></del>		
	6	-01_MW201-125MSD	16	<u> </u>		26	·	36		·	
	7	03_DGMW64A-123DUP	17			27		37			
	8	MB	18			28	· · · · · · · · · · · · · · · · · · ·	38		<del></del> -	
	9		19	·		29		39			
	10		20			30		40			

LDC #:	14786A6
SDG #:	06-1808

#### **VALIDATION FINDINGS CHECKLIST**

Page: 1 of	_
Reviewer: My	
2nd Reviewer:a	_
	_

Method:Inorganics (EPA Method Lee Cour)

	T.	T T		
Validation Area	Yes	No	NA	Findings/Comments
1s Technical Molding times 177-194	1124	)		
All technical holding times were met.	1			·
Coolor temperature criteria was met.				
lixCalibration.				
Were all instruments calibrated daily, each set-up time?	1		<u> </u>	
Were the proper number of standards used?				
Were all initial calibration correlation coefficients ≥ 0.995?	1			`
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	1			
Were titrant checks performed as required? (Level IV only)	V			
Were balance checks performed as required? (Level IV only)	1			
III. Blanks	Jen Leb	1 - A		
Was a method blank associated with every sample in this SDG?	1			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		1		
IV Matrix spike/Matrix/spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.		/		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.		-	1	
Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL.			/	
V. Eaboratory control samples				
Was an LCS anayized for this SDG?	S			
Was an LCS analyzed per extraction batch?	1			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?	/			
VI, Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			V	
Were the performance evaluation (PE) samples within the acceptance limits?			1	

LDC #:	(4'	18	6 AL
SDG #:	0	_	808

#### VALIDATION FINDINGS CHECKLIST

Page: of Reviewer: 49

Validation Area	Yes	No	NA	Findings/Comments
Vn. Sample Result Verification		数 数 数 数		
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	1			
Were detection limits < RL?	/			
Will special light seem in the data in the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the seem of the				
Overall assessment of data was found to be acceptable.	<b>\</b>			
IX nelocuplicates			KI,	
Field duplicate pairs were identified in this SDG.		>		
Target analytes were detected in the field duplicates.			/	
XIr.edfbancs ( ) Les apparents ( ) 1811 ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les apparents ( ) Les				
Field blanks were identified in this SDG.		V		
Target analytes were detected in the field blanks.				

LDC #: 14186A6 SDG #: 061808

## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:_	of
Reviewer:	พฯ
2nd reviewer:	0 /

All circled methods are applicable to each sample.

r i	
Sample ID	Parameter
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁰⁺ (αθ4)
2-4	pH (TD) (G) F (NO), NO₂ (SO), PO₄ (AL)R CN' NH, TKN TOC CR®+
- (-	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
y 7	ph tos ci f No ₃ No ₂ so ₄ Po ₄ ALK) cn ⁻ NH ₃ TKN TOC CR ⁰⁺
<i>J</i>	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN NH ₃ TKN TOC CR ⁸⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk cn NH ₃ TKN toc cr ⁰⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK cn Nh ₃ TKN TOC CR ⁵⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk cn' Nh ₃ TKN toc cr ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN NH ₃ TKN TOC CR ⁵⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk cn' Nh ₃ TKN TOC CR ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK cn' NH ₃ TKN toc cr ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ Alk cn Nh ₃ TKN toc cr ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ alk cn' nh ₃ tkn toc cr ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	ph tds ci f No ₃ No ₂ So ₄ Po ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁰⁺
	ph tds ci f No ₃ No ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	pH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR®+
<u> </u>	I PRI 100 CI F NO. NO. 304 FO. ALK CIV NIL TRIV 100 CR

Comments:	 

LDC #:	4'	18	6 A	6
SDG #:	یره	,-1	80	8

#### VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

Page:_	of
Reviewer:_	My
2nd Reviewer:	-
_	

METHOD: Inorganics, Method	ger lover	
The correlation coefficient (1) for	or the calibration of	was recalculated. Calibration date: 10/18/05
An initial or continuing calibrati	on verification percent recovery (%R) v	vas recalculated for each type of analysis using the following formula:
%R = Found x 100 Where,	Found = concentration of each analyte measure rule = concentration of each analyte in the IC	

			1415		Recalculated	Reported	
· Type of Analysis	Analyte		weil (units)	free (units)	r or %R	r or %R	Acceptable (Y/N)
Initial calibration		Blank	0	0		·	
Calibration verification		Standard 1	0.375	192214			·
	٠	Standard 2	1.5	761746			
	_	Standard 3	7.5	4036506			4
	404	Standard 4	(5	8 <del>1</del> 9666 L	V=0.999110	Y=0,99916	<i>J</i> .
	•	Standard 5	30	1799 >088	( 10.111110	0.7711.00	
·	·	Standard 6					·
		Standard 7					
Calibration verification	cesy	50	48.4		97	97	У
Calibration verification	u	40	364		91	91	
Calibration verification	103-N	1.5	1.43		95	95	1

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

#### **VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet**

Page:	_of
Reviewer:_	MH
2nd Reviewer:	

METHOD: Inorganics, Method	<u>see</u>	over
----------------------------	------------	------

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $%R = Found_x 100$ True

Where,

Found =

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result). concentration of each analyte in the source.

True =

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = \underline{(S-D)} \times 100$  Where,

S ≈

Original sample concentration

(S+D)/2

D ==

Duplicate sample concentration

			Found / S	True / D	Recalculated	Reported	Acceptable
Sample ID	Type of Analysis	Element	(units)	(units)	%R / RPD	%R / RPD	(Y/N)
Les	Laboratory control sample	u	<i>≯74</i>	40	94	94	Y
	Matrix spike sample		(SSR-SR)				
M			·				
	Duplicate sample				_		
7	·	Alkalining	795	299	(	1	Y

Comments: results.	ts: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 1	0.0% of the recalculated

TOTCLC.6

LDC #:	14786A6
SDG #:_	06-180R

# VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	of	
Reviewer:_	· M	
2nd reviewer:	0	$\mathcal{L}$
_		

•		•	2nd reviewer:
METHOD: Ino	rganics, Method Sec	onter	. 1.
Please see qu N N/A N N/A Y N N/A	alifications below for all question Have results been reported an Are results within the calibrated Are all detection limits below the	nd calculated correctly? d range of the instruments?	questions are identified as "N/A".
recalculated a	nalyte) results for		reported with a positive detect were
Concentration =	(Area X 0,0005301) }	Recalculation:	011 x 0,000(30)) × 10

#	Sample ID	Analyte	Reported Concentration (MJL)	Calculated Concentration (Mg/L )	Acceptable (Y/N)
	Σ	Alkaling Tos	299	299	<u> </u>
		TOS /	85	85)	
		Cl	152	152	
		No3-N	6.0	6.0	
		504	(5)	157	Jr J
			,		
12		U°4	316	376	4
				<u> </u>	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
				,	
<u> </u>			·		
					·
<b></b>					
<u></u>	,				
		·			
		· · · · · · · · · · · · · · · · · · ·			
		* -			

Note:	 	 	
	 ·	 	
	 <u> </u>		

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro

**Collection Date:** 

March 16, 2006

LDC Report Date:

April 4, 2006

**Matrix:** 

Water

Parameters:

Perchlorate

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1808

Sample Identification

01_MW201-123

01 MW201-123MS

01 MW201-123MSD

#### Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 331.0 for Perchlorate.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. LC/MS Instrument Performance Check

Not applicable.

#### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination  $(r^2)$  was greater than or equal to 0.990.

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 20.0%.

The percent differences (%D) of the second source calibration standard were less than or equal to 20.0% for all compounds.

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No perchlorate was found in the method blanks.

No field blanks were identified in this SDG.

#### VI. Surrogate Spikes

Surrogates were not required by the method.

#### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VIII. Laboratory Control Samples (LCS)

#### VIII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### IX. Regional Quality Assurance and Quality Control

Not applicable.

#### X. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XI. Target Compound Identifications

All target compound identifications were within validation criteria.

#### XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

#### XIII. Tentatively Identified Compounds (TICs)

Not applicable.

#### XIV. System Performance

The system performance was acceptable.

#### XV. Overall Assessment

Data flags have been summarized at the end of the report if data has been qualified.

#### XVI. Field Duplicates

No field duplicates were identified in this SDG.

MCAS El Toro Perchlorate - Data Qualification Summary - SDG 06-1808

No Sample Data Qualified in this SDG

MCAS El Toro Perchlorate - Laboratory Blank Data Qualification Summary - SDG 06-1808

No Sample Data Qualified in this SDG

MCAS El Toro Perchlorate - Field Blank Data Qualification Summary - SDG 06-1808

No Sample Data Qualified in this SDG

	#: <u>06-1808</u> ratory: <u>Applied Physics</u>	 s & Che	mistry Labor		_evel IV		•	Page:_ Reviewer:_
ИЕТ	HOD: LC/MS Perchlor	ate (FP	A Method 33	31.0)	•			2nd Reviewer:
ne s alida	samples listed below wation findings workshee	ere rev ets.	ewed for ea	cn of the f	ollowing vali	dation areas	. Validation find	ings are noted in a
		-		·		<del></del>		
	Validati	on Are	<u> </u>			<del> </del>	Comments	
l,	Technical holding times			4	Sampling dat	es: <i>3</i> /	16/06	
lla.	Initial calibration			<b>A</b>	y>-		,	
IIb.	Calibration verification			A	700=	St= 20	ı	
111.	Blanks			A				· · · · · · · · · · · · · · · · · · ·
IVa.	Surrogate recovery			NA			٠	<u> </u>
IVb.	Matrix spike/Matrix spike	duplicate	es	_ A				
IVc.	Laboratory control samp	les		Å	106			
V.	Internal standards			A				
VI.	Target compound identif	ication		A			,	
VII.	Compound Quantitation	and CRC	Ls	<b>A</b>			ž	
VIII.	System Performance			A				
IX.	Overall assessment of d	ata		A		· .		
Х.	Field duplicates			N				
XI.	Field blanks		<u> </u>			•		
ote:	A = Acceptable N = Not provided/applica SW = See worksheet	ible	R = Rin:	compounds sate eld blank	s detected	D = Duplic TB = Trip EB = Equ		
alidate	ed Samples:							
1	01_MW201-123	A 11	06W1730	MB0)	21	· · · · · · · · · · · · · · · · · · ·	31	
2 -	01_MW201-123MS	12			22		32	
3	01_MW201-123MSD	13			23		33	· · · · · · · · · · · · · · · · · · ·
1		14		-7	24		34	
5		15			25		35	
3		16			26		36	
		17		·	27		37	
3		18			28		38	·
-		19			29		39	
ю		20	İ		30		40	

#### LDC#: 186487 SDG#: 06-1808

#### **VALIDATION FINDINGS CHECKLIST**

Page: _/of _/ Reviewer: _____ 2nd Reviewer: ______

Validation Area	Yes	No	NA	Findings/Comments
Tremuical Fiolding times as the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon				
Ut technical holding times were met.	1			
Cooler temperature criteria was met.		and a state of		
[mbal calibration]				
old the laboratory perform a 5 point calibration prior to sample analysis?	/			
Vas a linear fit used for evaluation? If yes, were all percent relative standard eviations (%RSD) < 20%?				·
Vas a curve fit used for evaluation? If Yes, what was the acceptance criteria sed?	/		,	
old the initial calibration meet the curve fit acceptance criteria?	/			
Vere the RT windows properly established?		ng Specialist	Sept. Sept.	FETTINE STEETING STEETING STEETING STEETING STEETING STEETING STEETING STEETING STEETING STEETING STEETING STE
Vaccinitioning calibration				
What type of continuing calibration calculation was performed?%D or%R				
Vas a continuing calibration analyzed daily?				
Vere all percent differences (%D) ≤ 15%.0 or percent recoveries 85-115%?	/			
Vere all the retention times within the acceptance windows?		O.S. S. S. S. S. S. S. S. S. S. S. S. S.	10014-71672	
(Blanks)				
Vas a method blank associated with every sample in this SDG?	/			
las a method blank analyzed for each matrix and concentration?			·	<del></del>
as there contamination in the method blanks? If yes, please see the Blanks alidation completeness worksheet.		/		
Surronate spikes				
/ere all surrogate %R within the QC limits?				
the percent recovery (%R) of one or more surrogates was outside QC limits, was reanalysis performed to confirm %R?			/	
any %R was less than 10 percent, was a reanalysis performed to confirm %R?				·
I); Matrix spike/Marrix spike duplicates				
Pere a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each atrix in this SDG? If no, indicate which matrix does not have an associated S/MSD. Soil / Water.	/			
as a MS/MSD analyzed every 20 samples of each matrix?				
ere the MS/MSD percent recoveries (%R) and the relative percent differences PD) within the QC limits?				
III 1Lapporatory control sampless (#2)				
as an LCS analyzed for this SDG?	/			
as an LCS analyzed per extraction batch?				



#### **VALIDATION FINDINGS CHECKLIST**

Page: → of → Reviewer: ✓ → 2nd Reviewer: ✓

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoverles (%R) and relative percent difference (RPD) within the QC limits?				
IX Regional evality asset acceland edulity (control)				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?		XXIII DE UTAL PARA		
x grange compound the militarity of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat				
Were the retention times of reported detects within the RT windows?				
xialGompoundiquantilation/GRQLs.		<u> </u>		
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII systemiperiormanse				
System performance was found to be acceptable.	1			
XIII. Overali assessment oliqata: a				
Overall assessment of data was found to be acceptable.				
XIV Field applicates to the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of time of the time of the time of the time of the time of the time of the time of the time of the time of the time of the time of time of time of time of the time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of time of ti				
Were field duplicate pairs identified in this SDG?		_		
Were target compounds idetected in the field duplicates?	_		/	
XV faeldolanks is a series of the series of				
Were field blanks identified in this SDG?			/	
Were target compounds detected in the field blanks?		<u> </u>	1	

LDC#:	1478	648	
SDG#:	06-	1808	5

### **Initial Calibration Calculation Verification**

Page:	/ of
Reviewer:	9
2nd Reviewer:	

METHOD: EPA Method 331.0

Parameter: Perchlorate

Order of regression:

DATE	GC ID	COLUMN	(X) CONC ug/L	(Y) AREA	( Y^2) AREA
03/22/2006	LC/MS	NA	0.05	0.0966	9.34E-003
			0.1.	0.1723	2.97E-002
			0.2	0.3271	1.07E-001
			0.5	0.8634	7.45E-001
			1	1.7353	3.01E+000
			5	8.4363	7.12E+001
			_		

Regression Output:

Constant		0.01385
Std Err of Y Est		0.0225
R Squared		1.0000
No. of Observations		6
Degrees of Freedom		. 4
X Coefficient (s)	1.6858	-0.0183
Std Err of Coef.	0.0052	0.0030
Correlation Coefficient (r)	) =	0.9999806
Coefficient of Determination	on (r^2) =	0.9999613

LDC #:_ SDG #:	4786	T843
SDG #:	06-	808

#### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification**

	بر
Page:	
Reviewer:_	۹
2nd Reviewer:_	Я.

	•	/	
METHOD	: G6 <u></u>	_V_HPtc	/MS

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF
CF = continuing calibration CF
A = Area of compound
C = Concentration of compound

					Reported.	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	Average CF(Ical)/ CCV Conc.	CF/Conc. CCV	CF/Conc. CCV	%D	%D
1								
					1			
2		·						
3	<u>.</u> 1							
						<u> </u>	•	
4								
		•						

Comments:	Refer to Continuing	Calibration finding	s worksheet for I	ist of qualific	ations and asso	ciated sample	s when repor	ted results	do not agre	e within	10.0% of the
recalculated	results.				•				•		

LDC #: 14786487 SDG #: 116-1808

# VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

<u> </u>
iewer:_Q

METHOD:	GC		HPLC/US
METHOD.	 90	·	_111 = 4/12

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below

using the following calculation: %Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration

SC = Sample concentration

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

SA = Spike added
MS = Matrix spike

MSD = Matrix spike duplicate

MS/MSD samples:

		Sp	ike	Sample	Spike S	ample	Matrix spike		Matrix Spike Duplicate		MS/N	ISD
Comp	ound	Add	igd タム)	Cong.	Concer	tration	Percent F	Recovery	Percent Recovery		RPD	
		MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)											
Diesel	(8015)											
Benzene	(8021B)					·						
Methane	(RSK-175)											
2,4-D	(8151)											
Dinoseb	(8151)											
Naphthalene	(8310)											
Anthracene	(8310)											
нмх	(8330)											
2,4,6-Trinitrote	oluene (8330)											
Bichlya	ite	400	400	3/59	784	787	106	106	107	107	0	P
				1		`						
			ļ									
·		<u> </u>		<u> </u>								
		1	1	ll .	l	ĺ	1		J		·	L

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10,0% of the recalculated results.

1	1	
1	JOC! CNIAW WIN	d

1 ( )	. —
LDC #: HTOE	A8()
SDG #: 06-1	808

# VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification</u>

Page:/of_/
Reviewer:
2nd Reviewer:
عد

•	· / ·
METHOD:	GC V-HPLC/FLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration

SC = Sample concentration

RPD =(((SSCLCS - SSCLCSD) * 2) / (SSCLCS + SSCLCSD))*100

SA = Spike added

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: 2CS

		Spi Ade	ke .	Sample	Spike S	Sample	LC	LCS		LCS LCSD		SD C	LCS/LCSD	
Compo	ound	July 1		Conc.	Spike S Concer (	ration 74—	Percent F	Recovery	Percent Recovery		RPD			
		LCS	LCSD		LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.		
Gasoline	(8015)													
Diesel	(8015)													
Benzene	(8021B)							_						
Methane	(RSK-175)					<del>- ":</del>								
2,4-D	(8151)													
Dinoseb	(8151)													
Naphthalene	(8310)													
Anthracene	(8310)													
HMX	(8330)				·									
2,4,6-Trinitroto	luene (8330)													
Ronchino	rte.	0.10	NA	_	0.0875	NA	88	<i>38</i>				4.		
											•			
											,			

Comments: Refer to Laboratory Control Sample/Laboratory	<b>Control Sample Duplicate fine</b>	dings worksheet for list of qualifications	and associated samples when reported
results do not agree within 10.0% of the recalculated results			•

LDC #:4 SDG #:	4786	TBA
SDG #:	06-	828

#### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

	Page:	
	Reviewer:	9
2nd	Reviewer:	2

METHOD:GCHPLC /1-5	
	ed and verified for all level IV samples? ected target compounds agree within 10% of the reported results?
Concentration= (A)(Fv)(Df) (RF)(Vs or Ws)(%S/100)  A= Area or height of the compound to be measured	Example:  Sample ID. 1 Compound Name <u>Ferchlovate</u>
Fv= Final Volume of extract Df= Dilution Factor RF= Average response factor of the compound	Concentration = $(18.38e + 06) - 0.01 \ge 6$   $\times 200$
In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid	1.69
	= 367.8 Mg/

#	Sample ID	Compound	Reported Concentrations ( )	Recalculated Results Concentrations ( )	Qualifications
			·		
			,		

Comments:			 
<u></u>	•		



#### LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

CDM Federal

April 13, 2006

9444 Farnham Street, Suite 210

San Diego, CA 92123

ATTN: Mr. Michael Higman

SUBJECT: MCAS El Toro CTO 084, Data Validation

Dear Mr. Higman,

Enclosed is the final validation report and Excel qualification sheet for the fractions listed below. This SDG were received on April 3rd, 2006.

#### LDC project# 14798:

SDG#	<u>Fraction</u>
06-1826	Volatiles (Method CLP SOW OLM04.1) Metals (Method CLP SOW ILM04.2)
	Wet Chemistry (Method EPA 300.0, 310.1 and 160.1)

The following deliverables are submitted under this report:

•	Attachment I	Sample ID Cross Reference and Data Review Level
•	Attachment II	Overall Data Qualification Summary
•	Attachment III	CDM Database Qualification Summary
•	Enclosure I	EPA Level III ADR Outliers (including manual review outliers)
•	Enclosure II	EPA Level IV DVR (manual review)

Enclosure II
 EPA Level IV DVR (manual review)

The data validation was performed in accordance to the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999 and for Inorganic Data Review, October 2004. Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The following items were evaluated during the review:

- Holding Times
- Sample Preservation
- Cooler Temperatures
- Initial Calibration (Manual Review)
- Continuing Calibration (Manual Review)
- Blanks
- Surrogates
- Internal Standards (Manual Review)
- Matrix Spike/Matrix Spike Duplicates
- Laboratory Control Samples



- Detection and Quantitation LimitsField QC Samples

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto **Operations Manager/Senior Chemist** 

### Attachment I

**Sample ID Cross Reference and Data Review Level** 

### **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
17-Mar-2006	04_DBMW40-123	06-1826-1	N .	3010A	CLP-Metal	111
17-Mar-2006	04_DBMW40-123	06-1826-1	N	5030B	CLP-VOC	111
17-Mar-2006	04_DBMW40-123	06-1826-1	N	7470A	CLP-Metal	JH
17-Mar-2006	04_DBMW40-123MS	06-1826-1MS	MS	5030B	CLP-VOC	111
17-Mar-2006	04_DBMW40-123MSD	06-1826-1MSD	MSD	5030B	CLP-VOC	IIİ
17-Mar-2006	04_DBMW40-123	06-1826-1RE	N	3010A	CLP-Metal	III
17-Mar-2006	BT2-923	06-1826-4	тв	5030B	CLP-VOC	111
17-Mar-2006	05NEW1-123	06-1826-2	N	3010A	CLP-Metal	111
17-Mar-2006	05NEW1-123	06-1826-2	N	5030B	CLP-VOC	Ш
17-Mar-2006	05NEW1-123	06-1826-2	N	7470A	CLP-Metal	III
17-Mar-2006	05NEW1-123	06-1826-2	· N	GEN PREP	160.1	Ш
17-Mar-2006	05NEW1-123	06-1826-2	N	GEN PREP	300.0	III
17-Mar-2006	05NEW1-123	06-1826-2	N	GEN PREP	310.1	111
17-Mar-2006	05NEW1-123DUP	06-1826-2MD	DUP	GEN PREP	310.1	HÌ
17-Mar-2006	05NEW1-123MS	06-1826-2MS	MS	GEN PREP	300.0	III
17-Mar-2006	05NEW1-123MSD	06-1826-2MSD	MSD	GEN PREP	300.0	<b>III</b>
17-Mar-2006	05NEW1-123	06-1826-2RE	N	3010A	CLP-Metal	111
17-Mar-2006	05_DGMW67A-123	06-1826-3	N	3010A	CLP-Metal	IV
17-Mar-2006	05_DGMW67A-123	06-1826-3	N	5030B	CLP-VOC	IV
17-Mar-2006	05_DGMW67A-123	06-1826-3	N	7470A	CLP-Metal	IV
17-Mar-2006	05_DGMW67A-123	06-1826-3	N	GEN PREP	160.1	IV
17-Mar-2006	05_DGMW67A-123	06-1826-3	N	GEN PREP	300.0	IV
17-Mar-2006	05_DGMW67A-123	06-1826-3	. <b>N</b>	GEN PREP	310.1	· IV
17-Mar-2006	05_DGMW67A-123	06-1826-3RE	N	3010A	CLP-Metal	١٧

### Attachment II

### **Overall Data Qualification Summary**

#### **Overall Qualified Results**

Analytical Method	Field Sample ID	Matrix	Sample Type		Analyte	RL	Lab Result		verall allfler	Units	Reason Code
SDG: 61826										-	
CLP-Metal	04_DBMW40-123	AQ	N								
				ALUMINUM "		200	23.3B		J	ug/L	
•				ARSENIC		10	6.3B		U	ug/L	
				BARIUM		200	51.1B		J	ug/L	
				CHROMIUM		10	5.5B		J	ug/L	
				COBALT		. 50	4.2B		J	ug/L	
				COPPER		25	3.7B	•	u·	ug/L	
				IRON		100	46.0B		J	ug/L	
•	T. 1			MANGANESE	•	15	12.3B		J	ug/L	
				MERCURY		0.2	0.027B		υ	ug/L	
				POTASSIUM		5000	4340B		J	ug/L	
				THALLIUM	•	10	2.2B		j	ug/L	
	•			VANADIUM.		50	23.9B		J	ug/L	
	•			ZINC		20	14.5B		J	ug/L	
CLP-Metal	05_DGMW67A-123	AQ	N								
•				ARSENIC		10	5.3B		U	ug/L	
				BARIUM		200	51.6B		J	ug/L	
				CHROMIUM		10	3.2B		J	ug/L	
				COPPER		25	2.1B		U	ug/L	
				IRON		100	18.9B		J	ug/L	
	•			MANGANESE		15	0.61B		U	ug/L	,
				MERCURY		0.2	0.032B		U	ug/L	
		•		NICKEL		40	2.2B		J	ug/L	
				POTASSIUM		5000	2550B		J	ug/L	
	•			VANADIUM		50	10.0B		J	ug/L	
				ZINC		20	2.1B		J	ug/L	

### Overall Qualified Results

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61826				,	-		<del>,, ,,,,</del> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
CLP-Metal	05NEW1-123	AQ	N		******************					
•				ARSENIC	10	8.8B		U	ug/L	
•	•			BARIUM	200	118B		J	ug/L	
				CHROMIUM	10	4.8B		J	ug/L	
				COPPER	. 25	1.4B		υ	ug/L	
	•			IRON	100	22.1B		J .	ug/L	
				LEAD	<b>3</b> :	1.2B		J	ug/L	
				MANGANESE	15	7.3B		J	ug/L	
•	•			MERCURY	0.2	0.036B		Ù	ug/L	
				POTASSIUM	5000	3860B		. <b>J</b>	ug/L	
				THALLIUM	10	4.8B		J	.ug/L	
	•	•		VANADIUM	50	11.2B		· J	ug/L	
				ZINC	20	3.7B		· j	ug/L	
CLP-VOC	04_DBMW40-123	AQ	N							
	. <del>-</del>	•		1,2-DICHLOROPROPANE	1	1U		IJ	ug/L	
•		* .		2-BUTANONE (MEK)	10	10U	•	UJ	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
CLP-VOC	05_DGMW67A-123	AQ	N		••••••					
	55_5 5		••	1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
•	. •		•	2-BUTANONE (MEK)	10	10U		UJ	ug/L	•
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
	• •			CHLOROFORM	1	0.8J		j	ug/L	
CLP-VOC	05NEW1-123	AQ	N		·			•••••		
OLI -400		, Aug	14	1,2-DICHLOROPROPANE	1	1U		ŲJ	ug/L	
	•	*		2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L ug/L	
				CHLOROETHANE	0.5 1	0.5U 1U		UJ.	ug/L ug/L	
				OFFICE I LAME	,	10		UJ	ug/L	

#### **Overall Qualified Results**

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61826							- '			
CLP-VOC	BT2-923	AQ	TB							
	•			1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
	•	٠		2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
				CHLOROETHANE	1	10		UJ	ug/L	
				METHYLENE CHLORIDE	5	0.3J		J	ug/L	

### Attachment III

**CDM Database Qualification Summary** 

### CDM Federal Program Corporation Reason for Qualified Results SDG Nos.: 61826

Project No #: 14798

Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Detected Qualifier	Non Detected Qualifier	Analyte Name	Reason
61826	04 DBMW40-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61826	04 DBMW40-123	CLP-Metal	7440508	U	•	COPPER	Present in method blank
61826	04 DBMW40-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
61826	04_DBMW40-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61826	04_DBMW40-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61826	04_DBMW40-123	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61826	04_DBMW40-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61826	05_DGMW67A-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61826	05_DGMW67A-123	CLP-Metal	7440508	U		COPPER	Present in method blank
61826	05_DGMW67A-123	CLP-Metal	7439965	U .		MANGANESE	Present in method blank
61826	05_DGMW67A-123	CLP-Metal	7439976	· U		MERCURY	Present in method blank
61826	05_DGMW67A-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61826	05_DGMW67A-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61826	05_DGMW67A-123	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61826	05_DGMW67A-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61826	05NEW1-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61826	05NEW1-123	CLP-Metal	7440508	U		COPPER	Present in method blank
61826	05NEW1-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
61826	05NEW1-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61826	05NEW1-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61826	05NEW1-123	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61826	05NEW1-123	CLP-VOC	75003		. J	CHLOROETHANE	Continuing calibration percent difference
61826	BT2-923	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61826	BT2-923	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61826	BT2-923	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61826	BT2-923	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
				_			

### **Enclosure I**

**EPA Level III ADR Outliers** (including Manual Review Outliers)

# Quality Control Outlier Reports

SDG 06-1826

SDG # Labora	#: 14798A1 #: 06-1826 atory: <u>Applied Physics &amp; (</u>	Chem	nistry Labora	Le atory		ESS WORKS	SHEET	Date: 4// Page:/o Reviewer: 2nd Reviewer:
The sa	amples listed below were tion findings worksheets.	e revie	•		ollowing va	alidation areas.	Validation findir	ngs are noted in attac
	Validation	Area					Comments	
I.	Technical holding times			₩	Sampling of	dates: 3/	17/06	
[],	GC/MS Instrument performa	ince ch	neck	*		· · · · · · · · · · · · · · · · · · ·		
m.	Initial calibration			A .		·	· · · · · · · · · · · · · · · · · · ·	
IV.	Continuing calibration			TW	<u> </u>			
V.	Blanks			4	<u> </u>	·	· · · · · · · · · · · · · · · · · · ·	
VI.	Surrogate spikes			<b>A</b>	ļ	<u> </u>		<u> </u>
VII.	Matrix spike/Matrix spike dup	plicate	<u>s</u>	4	<u> </u>	····	·	·
VIII.	Laboratory control samples			<u>A</u>	109			
IX.	Regional Quality Assurance	and Q	uality Control	N				
X.	Internal standards	<u> </u>		<b>A</b>	<u> </u>	·	·	
XI.	Target compound identificati	ion		4	Not review	ed for Level III vali	dation.	
XII.	Compound quantitation/CRO	<u> </u>		A	Not review	ed for Level III vali	dation.	
XIII.	Tentitatively identified compo	ounds	(TICs)	1	Not reviewed for Level III validation.			
XIV.	System performance		<u> </u>	4	Not review	ed for Level III vali	dation.	
XV.	Overall assessment of data			A				
XVI.	Field duplicates		·	N_	Γ	,		
XVII.	Field blanks			5W	TB=	4		
Note: /alidate	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples: ** Indicates samp		= Rinsate FB = Fie	o compounds	Τε	D = Dupli B = Trip blank EB = Equi	cate pment blank	
1 (	04_DBMW40-123	11	066416	9430	21		31	
2 (	05NEW1-123	12		1	22		32_	
	05_DGMW67A-123**	13			23		33	
4 [	BT2-923	14			24		34	
5 (	04_DBMW40-123MS	15			25		35	
6 (	04_DBMW40-123MSD	16			26		36	
7		17	<u> </u>		27	<u> </u>	37	
8		18	Ĺ		28		38	
9		19	<u> </u>		29		39_	
10		20			30		40	<del></del>

#### TARGET COMPOUND WORKSHEET

#### METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	тт.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-isopropyttoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB, tert-Amyl methyl ether	vvv.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

LDC # 97	841
SDG #:06-	8%

#### VALIDATION FIN WIGS WORKSHEET Continuing Calibration

Pas.	_of
Reviewer:_	9
2nd Reviewer:_	2

#	Date	Standard ID	Compound	Finding %D (Limit: ≤25,0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	3/21/06	£419001	D	39.8		m+BK	-V41/A
	// /		M	85-1			
			0	26.0			/
			Q	38.9			
<u> </u>				/			
					•		
<u> </u>							
<u></u>			<u></u>				-
<u></u>			•			•	
<u> </u>							
		·		· · · · · · · · · · · · · · · · · · ·		<u> </u>	
<u> </u>							
<b></b>			·				
	· · · · · · · · · · · · · · · · · · ·	·					
_				•			
<u> </u>							
$\vdash$		· · · · · · · · · · · · · · · · · · ·					
<b>-</b>	<u> </u>						
	· ·						
						•	·
$\vdash$				•	•		
$\vdash$					•	-	
							<u> </u>
						l	

## Method Blank Outlier Report

Lab Reporting Batch: 61826

Lab ID: APCL

Analysis Method : CLP-Metal

Analysis Date: 03/20/2006

Preparation Type: 3010A

Preparation Date: 03/20/2006

Method Blank Lab Sample ID: 06M1161-MB-01

Preparation Batch : 06M1161M

ARSENIC	Result	Reporting Limit	Units	Lab Qual	Comments
Method Blank Result:	1.5	10	ug/L	В	•

ARSENIC was qualified due to method blank contamination in the following associated samples:

Client Sample ID	Lab Sample ID	Dilution	Result	Lab Qual	Result Units
04_DBMW40-123	06-1826-1	1	6.3	В	ug/L
05_DGMW67A-123	06-1826-3	1	5.3	В	ug/L

## Method Blank Outlier Report

Lab Reporting Batch: 61826

Lab ID: APCL

Analysis Method : CLP-Metal

Analysis Date: 03/22/2006

Preparation Type: 7470A

Preparation Date: 03/22/2006

Method Blank Lab Sample ID: 06M1174-MB-01

Preparation Batch: 06M1174H

		Reporting		Lab	
MERCURY	Result	Limit	Units	Qual	Comments
Method Blank Result:	0.073	0.2	ug/L	В	

MERCURY was qualified due to method blank contamination in the following associated samples:

Client Sample ID	Lab Sample/ID	Dilution	Result	Lab Quaf	Result : Units
04_DBMW40-123	06-1826-1	1	0.027	В	ug/L
05_DGMW67A-123	06-1826-3	1	0.032	В	ug/L
05NEW1-123	06-1826-2	1	0.036	В	ug/L

Project Number and Name:

6218.084 - EL TORO

ADR 8.0

Report Date: 4/12/2006 16:33

Page 2 of 2

SDG	#: 14798A4 #: 06-1826 atory: Applied Physics	4 1 1 1 1 1 1 1						10f J
	IOD: Dissolved Metals		ب	<b>A</b> (1)	or-		2nd Reviewer.	<del>-J-</del>
	amples listed below we tion findings workshee		ach of the f	ollowing valid	fation areas. V	alidation findir	ngs are noted in a	ittached
	Validatio	n Area				Comments		
1.	Technical holding times		Δ	Sampling date	s: 3/17/06		<u> </u>	
II.	Calibration		<i>b</i>	·	· , ,			
111.	Blanks		gw					
IV.	ICP Interference Check S	Sample (ICS) Analysis	A					
V.	Matrix Spike Analysis				up from 5	1406-1808	}	
VI.	Duplicate Sample Analys				1 )	<u> </u>		
VII.	Laboratory Control Samp	Laboratory Control Samples (LCS)						
VIII.	Internal Standard (ICP-M	N	sut v	Helizu				
IX.	Furnace Atomic Absorption	N	)	Q				
Χ	ICP Serial Dilution	·	4					
XI.	Sample Result Verification	n	A	Not reviewed to	for Level III valida	tion.		
XII.	Overall Assessment of D	ata	A					
XIII.	Field Duplicates		Ņ					
XIV.	Field Blanks		N	<u> </u>			<u> </u>	
Note:	A = Acceptable N = Not provided/applica SW = See worksheet	able R = Rinsate FB = F	lo compound	TB = 1	D = Duplicat Trip blank EB = Equipm			·
√alidate	ed Samples: ** Indicates sa	Imple underwent Level	IV validation			======		1
1	04_DBMW40-123	11		21		31_		
2	05NEW1-123	12		22		32		
3	05_DGMW67A-123**	13		23		33		
4	PB	14		24		34		
5	•	15_		25		35		
6		16		26		36	<u> </u>	
7		17		27		37		
8		18		28		38		
9		19		29		39		
10		20				40	•	
	:  exa  3=ADR							

LDC	#:(	}1	98A4
SUG	#•	Oh	18-1

Page:	Or
Reviewer:	Mb
2nd Reviewer:	. 6

SDG #: PB/ICB/CCB QUALIFIED SAMPLES
METHOD: Trace metals (EPA CLP SOW ILM04.0) Soil preparation factor applied:
Sample Concentration units, unless otherwise noted: Associated Samples:

								9	ampia ldegiffi	cation				
Analyte	Maximum PB" (mg/Kg)	Maximum PB' (ug/L)	Maximum ICB/CCB* (ug/L)	Action 1 eml	3	842	-0 2	•				. •	· •	
A)											:			
Sb											*			
As		1,5	2,938	14.69	5.3	6.3	8.8			,				
Ва			2.489	12,447							,			
Ве			0.237	1,185									·	
Cd				2185										
Ca			15.016	275.08										
Cr					·	····			·					<u> </u>
Co				3.395									<u> </u>	
Cu	<u> </u>		1413	7.065	2.]	>.7	1.4							
Fe	ļ			<b></b>	•									
Pb	· .·		ļ					· · · · · · · · · · · · · · · · · · ·	ļ ·		ļ	<u> </u>		
Mg		<b></b>		18,035		·	<u> </u>				<u> </u>			
Mn	<u> </u>	2 - 172	1.109	5.545	0.6	00.5			·				<u> </u>	
Hg		0.073	<b> </b>	0.365	0.032	0,827	0.036	<u> </u>	<u> </u>	<u>                                     </u>	<del> </del>		<del> </del>	<u> </u>
NI K	ļ <u>-</u>	ļ <del></del>	<b> </b>								-			
Se	<b></b>	<b> </b>	<b> </b>		<del></del>				<u> </u>	<del> </del>		<del> </del>	<del> </del>	
Ag	<del> </del>		1				-		<del> </del>				<del> </del>	ļ
Na		<u> </u>	20 10	171.35			<del> </del>		<del> </del>			<del> </del>	<del>                                     </del>	<del> </del>
n			752.11	1/21/2						1		<b>†</b>		
v								-						
Zn			1							T		<u> </u>	1	<del> </del>
В									T		1			
Мо			0.94)	4.705							1.			
Sr											1		<u> </u>	

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

## Reporting Limits Outlier Report (detected results reported below the reporting limit)

Lab Report Batch: 61826

Lab ID: APCL

Client Comple ID	Lab Camada IB	Analysis	<b>30</b> - 4 - 1	Anal to Name	Lab		EDD Reporting	
Client Sample ID 04_DBMW40-123	Lab Sample ID 06-1826-1	Method CLP-Metal	Matrix AQ	Analyte Name ALUMINUM	Qualifier B	Result 23.3	Limit	Units
04_DDI4440-125		CLI-Wetai		ARSENIC		·	200	ug/L
•				***************************************	В	6.3	10	ug/L
		••••••		CHROMIUM	В	51.1	200	ug/L
	· · · · · · · · · · · · · · · · · · ·	· <b></b>			В	5.5	10	ug/L
	· · · · · · · · · · · · · · · · · · ·			COBALT	В	4.2	50	ug/L
•••••	·			COPPER	. В	3.7	25	ug/L
	·			IRON	В	46.0	100	ug/L
				MANGANESE	В	12.3	15	ug/L
	· • • • • • • • • • • • • • • • • • • •		••••••	MERCURY	В	0.027	0.2	ug/L
	06-1826-1RE			POTASSIUM	В	4340	5000	ug/L
*	06-1826-1		· 	THALLIUM	В	2.2	10	ug/L
		•••••		VANADIUM	В	23.9	50	ug/L
		·		ZINC	В	14.5	20	ug/L
05_DGMW67A-123	06-1826-3			ARSENIC	В	5.3	10	ug/L
				BARIUM	В	51.6	200	ug/L
				CHROMIUM	В	3.2	. 10	ug/L
		·		COPPER	В	2.1	25	ug/L
				IRON	В	18.9	100	ug/L
			•••••	MANGANESE	В	0.61	15	ug/L
			• • • • • • • • • • • • • • • • • • • •	MERCURY	В	0.032	0.2	ug/L
	·		•••••	NICKEL	В	2.2	40	ug/L
	06-1826-3RE			POTASSIUM	В	2550	5000	ug/L
	06-1826-3			VANADIUM	В	10.0	50	ug/L
•	•••••			ZINC	В	2.1	20	ug/L
		CLP-VOC		CHLOROFORM	J	0.8	1	ug/L
05NEW1-123	06-1826-2	CLP-Metal		ARSENIC	В	8.8	10	ug/L
				BARIUM	В	118	200	ug/L
•		**********		CHROMIUM	В	4.8	10	ug/L
				COPPER	В	1.4	25	ug/L
				IRON	В	22.1	100	ug/L
	••••			LEAD	В	1.2	3	ug/L
• • • • • • • • • • • • • • • • • • • •	•••••	<del>i</del>		MANGANESE	В	7.3	15	ug/L
· · · · · · · · · · · · · · · · · · ·		••	· · · · · · · · · · · · · · · · · · ·	MERCURY	В	0.036	0.2	ug/L
	06-1826-2RE		••••	POTASSIUM	В	3860	5000	ug/L
	06-1826-2			THALLIUM	В	4.8	10	ug/L
••••••		<u>-</u>	·	VANADIUM	В	11.2	50	ug/L
	••••						•••••	

Project Number and Name:

6218.084 - EL TORO

ADR 8.0

Report Date: 4/12/2006 16:31

## Reporting Limits Outlier Report (detected results reported below the reporting limit)

Lab Report Batch: 61826

Lab ID: APCL

				·			EDD		
Client Sample ID	Lab Sample ID	Analysis Method	Matrix	Analyte Name	Lab Qualifier	Result	Reporting Limit	) Units	
05NEW1-123	06-1826-2	CLP-Metal	AQ	ZINC	В	3.7	20	ug/L	
BT2-923	06-1826-4	CLP-VOC		METHYLENE CHLORIDE	J	0.3	. 5	ug/L	

roject Number and Name:

6218.084 - EL TORO

Report Date: 4/12/2006 16:31

## Enclosure II

# **EPA Level IV Validation Reports**

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 17, 2006

**LDC Report Date:** 

April 11, 2006

Matrix:

Water

Parameters:

**Volatiles** 

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1826

Sample Identification

05_DGMW67A-123

#### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Contract Laboratory Program Statement of Work (SOW) OLM04.1 for Volatiles.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999); the following subsections correlate to the above guidelines.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value,
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

## I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

## IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
3/21/06	Chloroethane 2-Butanone Carbon tetrachloride 1,2-Dichloropropane	39.8 85.1 26.0 38.9	All samples in SDG 06-1826	J (all detects) UJ (all non-detects)	<b>A</b>

All of the continuing calibration RRF values were within validation criteria.

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

No field blanks were identified in this SDG.

## VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the SOW. All surrogate recoveries were within QC limits.

### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

### VIII. Laboratory Control Samples (LCS)

Although laboratory control samples were not required by the method, laboratory control samples were reported by the laboratory. Percent recoveries (%R) were within QC limits.

### IX. Regional Quality Assurance and Quality Control

Not applicable.

#### X. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XI. Target Compound Identifications

All target compound identifications were within validation criteria.

### XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

#### XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria.

#### XIV. System Performance

The system performance was within validation criteria.

#### XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### XVI. Field Duplicates

No field duplicates were identified in this SDG.

## MCAS El Toro, CTO 084 Volatiles - Data Qualification Summary - SDG 06-1826

SDG	Sample	Compound	Flag	A or P	Reason
06-1826	05_DGMW67A-123	Chloroethane 2-Butanone Carbon tetrachloride 1,2-Dichloropropane	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)

MCAS El Toro, CTO 084 Volatiles - Laboratory Blank Data Qualification Summary - SDG 06-1826

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084 Volatiles - Field Blank Data Qualification Summary - SDG 06-1826

No Sample Data Qualified in this SDG

SDG: Labor METH The s	#: 14798A1 #: 06-1826 atory: Applied Physics & HOD: GC/MS Volatiles (I amples listed below were tion findings worksheets	Che PA (	mistry Labor	Le ratory DLM04.1)	evel <del>III/I</del> '	<del>V-</del> 1V	ORKSHEE		2nd F	Date: Page:_ Reviewer: Reviewer: noted in a	/of /	
	Validation	Area	a				Com	ments			<del>~~~=</del>	
1.	Technical holding times	سدد		A	Sampling	dates:	3/17/0					
11.	GC/MS Instrument perform	ance o	heck	4				<del> </del>				
ffi.	Initial calibration			4								
IV.	Continuing calibration		<del></del>	W								
V.	Blanks			A					<del>'''; '' '</del> '			
VI.	Surrogate spikes			4			-					
VII.	Matrix spike/Matrix spike du	plicate	 es	1								
VIII.	Laboratory control samples			A	109							
IX.	Regional Quality Assurance	and (	Quality Control	(								
X.	Internal standards	-		4								
XI.	Target compound identifica	ion		4	Not review	ed for Level	III validation.				-	
XII.	Compound quantitation/CR			A	Not review	ed for Level	III validation.					
XIII.	Tentitatively identified comp		(TICs)		Not reviewed for Level III validation.							
XIV.	System performance		· · · · · · · · · · · · · · · · · · ·	A	Not reviewed for Level III validation.							
<del> </del>					Hotteness		THE VALIDATION	<del></del>		<del></del> _		
XV.	Overall assessment of data		<del></del>	\$	<u> </u>							
XVI.	Field duplicates			N	<u> </u>					· ·		
XVII.	Field blanks			_ N	<u> </u>		<del></del>			<del></del>		
Note: √alidate	A = Acceptable N = Not provided/applicabl SW = See worksheet d Samples: ** Indicates sam		= Rinsate FB = Fie	o compounds eld blank V validation		3 = Trip blan	Duplicate k Equipment bla	nk				
	94_DBMW40-123	11	064416	9 UBOI	21			31				
	05NEW1-123	12		1 - 1 V - 1	22			32				
	05 DGMW67A-123**	13		<del></del>	23			33		<del></del>		
	3T2-923	14			24			34				
	04-DBMW40-123M9	15	1	<u></u>	25			35				
	24_ <del>DBMW40-123MSD</del>	16			26			36		· · ·		
7		17			27			37				

LDC #: 14798A | G#: 06-18-6

## **VALIDATION FINDINGS CHECKLIST**

Page: /of > Reviewer: 9 2nd Reviewer: 9

મૃ. ત્ર Method: Volatiles (EPA CLP SOW OLM0<del>3.1)</del>

Validation Area	Yes	No	NA	Findings/Comments
E Technical holding times	1	1	1	I
All technical holding times were met.	<b>-</b>			
Cooler temperature criteria was met.	1			
H. GE/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	-			
Were all samples analyzed within the 12 hour clock criteria?	/.			
]] 3phial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	1			
Were all percent relative standard deviations (%RSD) $\leq$ 30% and relative response factors (RRF) $\geq$ 0.05?	/			·
R/ Continuing celibration	Τ			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	_			
Were all percent differences (%D) $\leq$ 25% and relative response factors (RRF) $\geq$ 0.05?		/		
V. Blanks				
Was a method blank associated with every sample in this SDG?	<			
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surrogete spikes				
Were all surrogate %R within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
/II; Metrix spike/Matrix spike:duplicates				
Nere a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		-		
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences RPD) within the QC limits?	/			
/III. Laboratory control samples:				
Nas an LCS analyzed for this SDG?				
Vas an LCS analyzed per analytical batch?	X			

LDC #: 147984 SDG #: 06-18-26

## **VALIDATION FINDINGS CHECKLIST**

Page: 2 of 3
Reviewer: 2nd Reviewer: _____

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?  Were compound quantitation and CROLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII. Tentelivaly identified compounds. (TICs)  Were the major lons (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major lons within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  OV. System performance:  System performance was found to be acceptable.  OV. Cherall assessment of data was found to be acceptable.	Validation Area	Yes	No	NA	Findings/Comments
Were performance evaluation (PE) samples performed?  Were the performance evaluation (PE) samples within the acceptance limits?  X. internal standards  Were internal standards area counts within -50% or +100% of the associated calibration standard?  Were retention times within ± 30 seconds of the associated calibration standard?  XI. Target compound interdificience  Were retention times (RRTe) within ± 0.06 RRT units of the standard?  Did compound spectra meet specified EPA Functional Guidelines* criteria?  Were chromatogram peaks verified and accounted for?  XII. Campound quantitation CROLs  Were the correct internal standard (IS), quantitation ion and relative response factor (RIP) used to quantitate the compound?  Were compound quantitation and CROLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII. Sensitivally identified commonunts (RICS)  Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?  Were relative intensities of the major ions within ± 20% between the sample and lands?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  Were performance was found to be acceptable.  V. Overall assessment of data was found to be acceptable.  V. System performance was found to be acceptable.  V. System performance was found to be acceptable.  V. System performance was found to be acceptable.	Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	1			
Were the performance evaluation (PE) samples within the acceptance limits?  X. Internal standard area counts within 50% or +100% of the associated calibration standard?  Were retention times within ± 30 seconds of the associated calibration standard?  Were retention times (RRTP) within ± 0.06 RRT units of the standard?  Did compound spectra meet specified EPA Functional Guidelines* criteria?  Were chromotogram packs verified and accounted for?  XIL Compound spectra meet specified EPA Functional Guidelines* criteria?  Were the correct internal standard (IS), quantitation ion and relative response factor (RRP) used to quantitate the compound?  Were compound quantitation and CROLs editated to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIR Terrifitively identified (compounds (ICG))  Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?  Were relative intensities of the major ions within ± 20% between the sample and landard indicate that the laboratory performed a library search for all required peaks in the chromotograms (samples and blanks)?  Out of the rew data indicate that the laboratory performed a library search for all required peaks in the chromotograms (samples and blanks)?  System performance was found to be acceptable.  Out of the rew data indicate that was found to be acceptable.	IX. Regional Quality Assurance and Quality Control				
Were internal standard area counts within -50% or +100% of the associated calibration standard?  Were retention times within ± 30 seconds of the associated calibration standard?  Xi. Tetiget compount, lacifilication:  Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?  Did compound spectra meet specified EPA *Functional Guidelines' criteria?  Were chromatogram peaks verified and accounted for?  Xii. Compound quantitation and call (S), quantitation in end relative response factor (RRF) used to quantitate the compound?  Were compound quantitation and CRGLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  Xiii. Seniables): identified compounds (RG):  Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the required peaks in the chromatograms (samples and blanks)?  Xii. System performance was found to be acceptable.  Xii. Genial assessment of data was found to be acceptable.	Were performance evaluation (PE) samples performed?		/	1	
Were internel standard erea counts within ± 30 seconds of the associated calibration standard?  Were retention times within ± 30 seconds of the associated calibration standard?  XI. Targer compounds familification  Were relative retention times (RRT'e) within ± 0.06 RRT unks of the standard?  Did compound spectra meet specified EPA "Functional Guidelines" criteria?  Were chromatogram peaks verified and accounted for?  XIII. Compound quantitation/CRICL±  Were the correct internal standard (IS), quantitation ion and relative response factor (RRT) used to quantitate the compound?  Were compound quantitation and CROLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII. Tentalive) identified compounds. (ICS)  Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectrum?  Were the major ions (> 10 percent relative intensity) in the reference spectrum?	Were the performance evaluation (PE) samples within the acceptance limits?				ı
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?  Note: Target compound (sertification)  Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?  Old compound spectra meet specified EPA "Functional Guidelines" criteria?  Were chromatogram pasks verified and accounted for?  Note: Compound quantitation and criterial standard (IS), quantitation ion and relative response factor (RRT) used to quantitation and CRGLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  Were compound quantitation and CRGLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII. Tentalivaly dishifted compounds (TGS)  Were the major lons (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major lons within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  Not. System performance was found to be acceptable.  V. Overall assessment of data was found to be acceptable.	X. Internel standards				
Xi. Terget compound, clarification  Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?  Did compound spectra meet specified EPA "Functional Guidelines" criteria?  Were chromotogram peaks verified and accounted for?  XII. Compound quantitation and CROLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  Were the compound quantitation and CROLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII. Tenselvaly identified compounds (RICs)  Were the major lons (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major lons within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  OVEY System performance was found to be acceptable.  V. Overall specialization.		/	r .		
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?  Did compound spectra meet specified EPA "Functional Guidelines" criteria?  Were chromatogram peaks verified and accounted for?  XIII. Compound squantitation (IS), quantitation for and relative response factor (RRT) used to quantitate the compound?  Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII. Tentalive). identified compounds. (ICS).  Were the major lons (> 10 percent relative Intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major lons within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  OV. System performance.  System performance was found to be acceptable.  OV. Overall assessment of data was found to be acceptable.  OV. Overall assessment of data was found to be acceptable.	Were retention times within $\pm$ 30 seconds of the associated calibration standard?	/	***************************************		
Did compound spectra meet specified EPA "Functional Guidelines" criteria?  Were chromatogram peaks verified and accounted for?  XII) Compound quantitation (IS), quantitation ion and relative response factor (RIF) used to quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII Tentelinely identified compounds (TICs)  Were the major lons (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major lons within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  OV. System performance was found to be acceptable.  OV. Overall assessment of data was found to be acceptable.  OV. Overall assessment of data was found to be acceptable.	XL Target compound identification				
Were the correct internal standard (IS), quantitation ion and relative response factor (RIP) used to quantitate the compound?  Were the correct internal standard (IS), quantitation ion and relative response factor (RIP) used to quantitate the compound?  Were compound quantitation and CROLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII. Tentelively identified compounds. (IICs).  Were the major lons (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major lons within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  System performance was found to be acceptable.  Overall assessment of data was found to be acceptable.  Overall assessment of data was found to be acceptable.	Were relative retention times (RRT's) within $\pm$ 0.06 RRT units of the standard?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?  Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII. Tentrivaly identified compounds (TICS)  Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  OV. System performance  System performance was found to be acceptable.  Overall assessment of data was found to be acceptable.	Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?  Were compound quantitation and CROLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII. Tentelivaly identified compounds. (TICs)  Were the major lons (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major lons within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  OV. System performance:  System performance was found to be acceptable.  OV. Cherall assessment of data was found to be acceptable.	Were chromatogram peaks verified and accounted for?				
Were compound quantitation and CROLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?  XIII. Tentrilvialy identified (compounds (TICs))  Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  OV. System performance:  System performance was found to be acceptable.  OV. Givenil assessment of data was found to be acceptable.  OV. Field displicates:	XII. Compound quantitalicr/CHQLs				
and dry weight factors applicable to level IV validation?  XIII. Tentalizaty identified compounds (TICs).  Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  By System performance  System performance was found to be acceptable.  Overrall assessment of data was found to be acceptable.  (VI. Field duplicates	Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?			• •	
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?  Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  RIV: System performance  System performance was found to be acceptable.  Overall assessment of data was found to be acceptable.  CV: Field duplicates	Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		,		
Were relative intensities of the major ions within ± 20% between the sample and the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  RW System performance:  System performance was found to be acceptable.  CV: Overall assessment of data was found to be acceptable.  CV: Field duplicates	XIII. Tentalively identified compounds (NCs)				
the reference spectra?  Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?  (IV System performance:  System performance was found to be acceptable.  (V) Giverall assessment of data was found to be acceptable.  (V) Field duplicates	Were the major lons (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				
required peaks in the chromatograms (samples and blanks)?  (V. System performance:  System performance was found to be acceptable.  (V. Overall assessment of data was found to be acceptable.  (VI. Field duplicates	Were relative intensities of the major ions within $\pm$ 20% between the sample and the reference spectra?		•		
System performance was found to be acceptable.  (V. Overall assessment of data was found to be acceptable.  (VI. Field duplicates	Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
Overall assessment of data was found to be acceptable.  OVE Field duplicates	XIV System performance				
Overall assessment of data was found to be acceptable.  (VI: Field: Duplicates	System performance was found to be acceptable.				
(VI: Field duplicates	(V. Overall assessment of data				
	Overall assessment of data was found to be acceptable.		Ī	T	
Tield duplicate pairs were identified in this SDG	(VI: Field duplicates				
icid duplicate pario viore inclused in this SDC.	Field duplicate pairs were identified in this SDG.		1	Ţ	
arget compounds were detected in the field duplicates.	arget compounds were detected in the field duplicates.			7	

LDC #: 1479-41 SDG #: 06-18-6

## VALIDATION FINDINGS CHECKLIST

Page: → of ≥
Reviewer: ○
2nd Reviewer: ○

Validation Area	Yes	No	NA	Findings/Comments
XVII. Field∖btanke				
Field blanks were identified in this SDG.		./:		
Target compounds were detected in the field blanks.		٠		

## TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA CLP SOW OLM04.2)

A. Chloromethane*	Q. 1,2-Dichloropropane**	GG. Xylenes, total	WW. Bromobenzene	MMM. Naphthalene
B. Bromomethane	R. cls-1,3-Dichloropropene	HH. Vinyl acetate	XX. 1,2,3-Trichioropropane	NNN. 1,2,3-Trichlorobenzene
C. Vinyl choride**	S. Trichloroethene	ii. 2-Chioroethylvinyl ether	YY. n-Propylbenzene	OOO, 1,3,5-Trichlorobenzene
D. Chloroethane	T. Dibromochloromethane	JJ. Dichlorodifluoromethane	ZZ. 2-Chlorotoluene	PPP. trans-1,2-Dichloroethene
E. Methylene chloride	U. 1,1,2-Trichloroethane	KK. Trichlorofluoromethane	AAA. 1,3,5-Trimethylbenzene	QQQ, cis-1,2-Dichloroethene
F. Acetone	V. Benzene	LL. Methyl-tert-butyl ether	BBB, 4-Chlorotoluene	RRR. m,p-Xylenes
G. Carbon disulfide	W. trans-1,3-Dichloropropene	MM. 1,2-Dibromo-3-chloropropane	CCC. tert-Butylbenzene	SSS. o-Xylene
H. 1,1-Dichloroethene**	X. Bromoform*	NN. Diethyl ether	DDD. 1,2,4-Trimethylbenzene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane
I. 1,1-Dichloroethane*	Y. 4-Methyl-2-pentanone	OO. 2,2-Dichloropropane	EEE. sec-Butylbenzene	UUU, Benzyl chloride
J. 1,2-Dichloroethene, total	Z. 2-Hexanone	PP. Bromochioromethane	FFF. 1,3-Dichlorobenzene	VVV. 4-Ethyltoluene
K. Chlaroform**	AA. Tetrachioroethene	QQ. 1,1-Dichloropropene	GGG. p-isopropyitoluene	WWW, Ethanol
L. 1,2-Dichloroethane	BB. 1,1,2,2-Tetrachloroethane*	RR. Dibromomethane	HHH. 1,4-Dichlorobenzene	XXX. Ethyl ether
M. 2-Butanone	CC. Toluene**	SS. 1,3-Dichloropropane	ill. n-Butylbenzene	
N. 1,1,1-Trichloroethane	DD. Chlorobenzene*	TT. 1,2-Dibromoethane	JJJ. 1,2-Dichlorobenzene	
O. Carbon tetrachioride	EE. Ethylbenzene**	UU. 1,1,1,2-Tetrachloroethane	KKK. 1,2,4-Trichlorobenzene	
P. Bromodichloromethane	FF. Styrene	VV. isopropylbenzene	LLL. Hexachlorobutadiene	

* = System performance check compour	nds (SPCC) for RRF; **	= Calibration check comp	oounds (CCC) fo	r %RSD.	
Notes:		· -		·	

## **VALIDATION FINE INGS WORKSHEET** Continuing Calibration

Reviewer: 2nd Reviewer:

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were all percent differences (%D)  $\leq$  25% and relative response factors (RRF)  $\geq$  0.05?

#	Date	Standard ID	Compound	Finding %D (Limit: <25.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	- Qualifications
	3/21/06	4419001	$\supset$	39.8		au+BC	· VU1/A
	7 /		M	85-1			
			0	26.0 38.9			/
	<u> </u>		_&	38.9	·		V
				· /			
			·				
		· · ·	·				
							-
					1.0		
			·				
	·					•	
$\vdash$				·			
					3-5	•	
$\vdash$							
				•	<del></del>		
$\vdash \dashv$							
		<del></del>		<u> </u>	•.		
$\vdash$	<del></del>		<u> </u>			· · · · · · · · · · · · · · · · · · ·	
$\vdash$							
						· · · · · · · · · · · · · · · · · · ·	
				•		•	

LDC #: KT98A   SDG #: 06-18-6 METHOD: GC/MS VOA ( Y N N/A Were field Y/N N/A Were targ Blank units: Were Sampling date: 3/17/	d blanks identifie	d in this SDO	<b>3</b> ?	Field I		RKSHEET			Revi 2nd Revi	Page: _/of_/ lewer: lewer:
Field blank type: (circle	one) Field Blank	/ Rinsate T	rip Blank 10	ther:	Asso	ciated Sampl	es: <u> </u>	3		
Compound	Blank ID									
	14									
Methylene chloride	0.3									
Acetone										
Chloroform				<u> </u>		-				
TICs:										
Unknown	4(1.85)				ļ. <u></u>		<u> </u>			
		•			<u> </u>		 			<u> </u>
CRQL		· ·	<u> </u>			<u> </u>			<u> </u>	
Blank units:				ther:	Asso	ciated Sampl	es:			
Compound	Blank ID				s	ample identifica	ition			
Methylene chloride									•	
Acatona		·								1

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disuffide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".



Chloroform

CRQL

LDC #:4	148P
SDG #:06	

# VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	
Reviewer:_	<u>a</u>
2nd Reviewer:	

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = (A_x)(C_x)/(C_x), average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)  $A_x = Area of compound,$ 

A_{la} = Area of associated internal standard

C_x = Concentration of compound, S = Standard deviation of the RRFs C_b = Concentration of internal standard

X = Mean of the RRFs

Toluene (3rd internal standard)

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF ( 10 std)	RRF ( / () std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	12/0/1	Methylene chloride (1st internal standard)	1.996	1.996	2,087	780.c	4.90	1.89
		1-/9/04	Trichlorethene (2nd internal standard)	0.294	0.294	0.303	0.303	6.72	6.70
			Toluene (3rd Internal standard)	1.507	1.507	1.518	1.518	4.46	4.46
2			Methylene chloride (1st internal standard)						
			Trichlorethene (2nd internal standard)						·
			Toluene (3rd internal standard)						
3			Methylene chloride (1st internal standard)						
			Trichiorethene (2nd internal standard)						
	<u> </u>		Toluene (3rd internal standard)						
4			Methylene chloride (1st internal standard)						
		1	Trichlorethene (2nd internal standard)						

Comments:	Refer	to Initial	Calibration	findings	worksheet	for	<u>list of</u>	qualifications	and	<u>associated</u>	samples	when	reported	results	do not	agree	within	10.0%	of the
recalculated	results																		
	•																		
									<del></del>		<del></del>								<del></del>

## **VALIDATION FINDINGS WORKSHEET** Continuing Calibration Results Verification

Page	:/of/
Reviewe	r: 0/-
2nd Reviewe	r:_ <i>R</i>

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_{\star})(C_{\mathtt{b}})/(A_{\mathtt{b}})(C_{\star})$ 

RRF = continuing calibration RRF A, = Area of compound,

A_k = Area of associated internal standard

C, = Concentration of compound,

C_k = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	£1419R1	361/16	Methylene chloride (1st internal standard)	2.087	2.151	2.15	9.	3.
		7 /00	Trichlorethene (2nd internal standard)	0.303	0.272	0.272	10.2	103
			Toluene (3rd internal standard)	1.518	1.625	1.625	7.0	7.0
2			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)		·			
			Toluene (3rd Internal standard)					
3			Methylene chloride (1st Internal standard)					
		,	Trichlorethene (2nd Internal standard)					
			Toluene (3rd internal standard)					
4			Methylene chloride (1st internal standard)			, '		
			Trichlorethene (2nd Internal standard)	_				
			Toluene (3rd internal standard)					

Comments:	Refer to Continuing	Calibration findings	worksheet for list	of qualifications and	<u>i associated samples wher</u>	n reported results do	not agree within 1	0,0%
of the recalc	ulated results.	,		<u> </u>		•		

CONCLC.1C4

LDC #: 4798 SDG #:06-1

## **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification**

Page:_	
Reviewer:	9
2nd reviewer:	0-
	<del></del>

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent recoveries (%R)	of surrogates were recalculated for	r the compounds identified below	using	the following calculation:
				A Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Comm

% Recovery: SF/SS * 100

Where: SF = Surrogete Found SS = Surrogete Spiked

Sample ID: 3

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference	
			Reported	Recalculated		
Toluene-d8	10	993	100	99		
Bromofluorobenzene		10.06	1. 101	101	0	
1,2-Dichloroethane-d4	V.	11.0T		1 1/1		

Sample ID:

	Surrogate Spiked	Surrogate Found	. Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Tojuene-d8					
Bromofluorobenzene		·			
1,2-Dichloroethane-d4					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene		·			
1,2-Dichloroethane-d4					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene				:	
1,2-Dichloroethane-d4					

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					

## **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification

	Page:_ Reviewer:	
2nd	Reviewer:	Ri.

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration

SA = Spike added

SC = Sample concentration

RPD = I MSC - MSDC I * 2/(MSC + MSDC)

MSC = Matrix spike percent recovery

MSDC = Matrix spike duplicate percent recovery

MS/MSD sample:

Compound	Ac	pike Ided	Sample Concentration	Spiked Sample Concentration		Matrix Spike Percent Recovery		Matrix Spike Duplicate  Percent Recovery		MS/MSD RPD	
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene	10	10	ND	9.81	9.24	98	98	92	92	6	6
Trichloroethene				9.71	10.1:	97	9T	101	101	4	4
Benzene				10.1	10.	101	10	102	102		
Toluene				9.23	9.61	92	92	96	96	4	4
Chlorobenzene				9.15	9.77	92	92	98	98	6	6

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings	worksheet for list of qualifications and associated same	les when reported results do not agree within
10.0% of the recalculated results.	•	



LDC #: 14 1984 SDG #: 06-18-6

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	
Reviewer:	9
2nd reviewer:	
	. 1

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

(A.)(I.)(DF) Concentration = (A,)(RRF)(V)(%S) Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms (ng) RRF Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) ٧, or grams (g). Df Dilution factor. Percent solids, applicable to soils and solid **%S** matrices only.

Sample I.D. 3:

Conc. = (9994)(10)(1) (31216)(3.792)(1)(1) = 0.84 M L

Reported Concentration ( ) Qualification

Compound Concentration ( ) Qualification

Compound Concentration ( ) Qualification

Qualification

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 17, 2006

**LDC Report Date:** 

April 5, 2006

Matrix:

Water

Parameters:

Wet Chemistry

Validation Level:

**NFESC Level IV** 

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1826

Sample Identification

05_DGMW67A-123

#### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 160.1 for Total Dissolved Solids, EPA Method 300.0 for Chloride, Nitrate as Nitrogen, and Sulfate, and EPA Method 310.1 for Alkalinity.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the methods stated above.

A table summarizing all data qualification is provided at the end of this report. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

#### a. Initial Calibration

All criteria for the initial calibration of each method were met.

#### b. Calibration Verification

Calibration verification frequency and analysis criteria were met for each method when applicable.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the method blanks.

No field blanks were identified in this SDG.

## IV. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### V. Duplicates

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

### VI. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VII. Sample Result Verification

All sample result verifications were within validation criteria.

#### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

## IX. Field Duplicates

No field duplicates were identified in this SDG.

MCAS El Toro, CTO 084 Wet Chemistry - Data Qualification Summary - SDG 06-1826

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 06-1826

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084 Wet Chemistry - Field Blank Data Qualification Summary - SDG 06-1826

No Sample Data Qualified in this SDG

DG #: <u>06-18:</u> aboratory: <u>Ar</u>	oplied Physics	& Chemi	stry Labo		evel III/IV			Page: Reviewer: 2nd Reviewer:
ETUAN: /A:	aaluto) Alkalin	ity/FDA I	Method 3	10 1) Chlo	ride Nitrate	.N. Sulfate (F	EPA Method 30	· <del>-</del>
OS (EPA Me			11001100		Hao? THEOLO			<u></u>
ne samples l	isted below we	ere reviev	ved for ea	ch of the f	ollowing valid	dation areas.	Validation findi	 ngs are noted in att
lidation findi	ngs workshee	ets.			:			
	Validatio	on Area	<del></del>	T T		<del>***********</del>	Comments	
I. Technic	al holding times	<u> </u>		A	Sampling date	s: 3/17/06		
	alibration			A	Camping date	·s 2/11/1- s	<u></u>	
	ion verification			A		<del></del>	···	
III. Blanks				A	i			
	pike/Matrix Spike	Duplicates		A				
V Duplicat				A				
	ory control sample	es		A	14/2	4p		•
	result verification			Α	Not reviewed	for Level III vali	dation.	·
	assessment of da			À				
IX. Field du	plicates			N				
X Field bla				l N				
te: A = Acc N = Not SW = S	eptable provided/applica ee worksheet	ble	R = Rin	o compound sate eld blank	s detected	D = Duplic TB = Trip l EB = Equi		
lidated Sample	s: ** Indicates sa	ample under	went Level	IV validation	<u> </u>			
05NEW1-	123	11			21	,	31	
05_DGMV	V67A-123**	12			22		32	
04_DBMW	/40-123MS	13	<u>.</u> <u>-</u>		23		33	
04_DBMW	/40-123MSD	14			24		34	·
05NEW1-	123DUP	15		·.	25	<del></del>	35	
HB	<u> </u>	16		·	26		36	_ <del></del>
		17			27		37	
		18			28		38	
	·	19			29		39	· · · · · · · · · · · · · · · · · · ·
0		20			30		40	

LDC #:	4	19	8H6
SDG #:	OL		826

#### **VALIDATION FINDINGS CHECKLIST**

Page: of Reviewer: My 2nd Reviewer:

Method:Inorganics (EPA Method See cover	Yes	No	NA.	Findings/Comments
Validation Area  If Technical Holding times 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1103	77,1	1 110	rindingsconnicins
All technical holding times were met.	\ <b>\</b>		SAFA ON	
Coolor temperature criteria was met.	1	<del>                                     </del>		
II. Calibration			De:	
Were all instruments calibrated daily, each set-up time?	1			
Were the proper number of standards used?	1			
Were all initial calibration correlation coefficients ≥ 0.995?	1			
Were all initial and continuing calibration verification %Rs within the 90-110% QC limits?	1			
Were titrant checks performed as required? (Level IV only)	V			
Were balance checks performed as required? (Level IV only)	1			
III E Blanks				
Was a method blank associated with every sample in this SDG?	1			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spike/Matrix spike/dupiicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	1			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	1			
Were the MS/MSD or duplicate relative percent differences (RPD) ≤ 20% for waters and ≤ 35% for soil samples? A control limit of ≤ CRDL(≤ 2X CRDL for soil) was used for samples that were ≤ 5X the CRDL, including when only one of the duplicate sample values were ≤ 5X the CRDL.	1			
V: Laboratory control samples :: ** *** *** **** ******************	V I			
Was an LCS anaytzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% (85-115% for Method 300.0) QC limits?			Komos	
VI Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			◩	

LDC#:	14	79	846
SDG#:	0	1	626

## **VALIDATION FINDINGS CHECKLIST**

Page:_	Lof_
Reviewer	MH
2nd Reviewer.	<u> </u>

Validation Area	Yes	No	NA	Findings/Comments
Vr. Sample Resum Vernicaum				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	~			
Were detection limits < RL?	1			
QIII. (Detail assessment of relations to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro				
Overall assessment of data was found to be acceptable.	1			
X Field doubleates at the state of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the par				
Field duplicate pairs were identified in this SDG.		>		
Target analytes were detected in the field duplicates.			1	
X: right blanks				
Field blanks were identified in this SDG.		)		
Target analytes were detected in the field blanks.			1	

LDC #: 14998 A6 SDG #: 06-1576

## VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:_	of	
Reviewer:	HY	
2nd reviewer:	- A	
		•

All circled methods are applicable to each sample.

Sample ID	Parameter
1,2	PH (TDS) C) F (NQ) NO2 (SQ) PO4 (ALB) CN NH3 TKN TOC CR®+
or 3.4	PH TDS (C) F (N)3 NO2 (S)3 PO4 ALK CN NH3 TKN TOC CR®+
15	PH TDS CI F NO, NO, SO, PO, ALK ON NH, TKN TOC CHO+
·	PH TDS CI F NO, NO, SO, PO, ALK CN NH, TKN TOC CROT
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	ph tds ci f no, no, so, po, alk cn nh, tkn toc cr*
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR"+
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR"+
	ph tds ci f No, No, So, Po, Alk Cn NH, TKN toc CR
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR"+
	ph tds ci f no, no, so, po, alk cn nh, tkn toc cr*
	PH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CRO+
	PH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	ph TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR6+
	pH TDS CI F NO, NO, SO, PO, ALK CN' NH, TKN TOC CR°+
	PH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+
	pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN' NH ₃ TKN TOC CR ⁶⁺
	ph tds ci f no3 no2 so4 po4 alk cn. nh3 tkn toc cr.
	pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
	pH TDS CI F NO3 NO2 SO4 PO4 ALK CN NH3 TKN TOC CR8+
	pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁰⁺
	pH TDS CI F NO ₃ NO ₂ SO ₄ PO ₄ ALK CN NH ₃ TKN TOC CR ⁶⁺
	pH TDS CI F NO, NO, SO, PO, ALK CN NH, TKN TOC CR8+

Comments:	

## **VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet**

Page:_	Lot_
Reviewer:_	my
2nd Reviewer:_	2

METHOD: Inorganics,	Method	<u>See</u>	come	

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = <u>Found</u> x 100 True

Where,

Found =

concentration of each analyte <u>measured</u> in the analysis of the sample. For the matrix spike calculation, Found = SSR (spiked sample result) - SR (sample result). concentration of each analyte in the source.

True =

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = 1S-D1 \times 100$  Where,

S =

Original sample concentration

(S+D)/2

D =

Duplicate sample concentration

Sample ID	Type of Analysis	Element	Found / 8 (units)	True / D (units)	Recalculated  %R / RPD	Reported %R / RPD	Acceptable (Y/N)
щ	Laboratory control sample	504	14.68	15	98	18	У
3	Matrix spike sample	l03-N	(SSR-SR)	37.5	(05	(•5	
5	Duplicate sample	Akalisty	<b>76</b> ]	15.b	2	2	1

Comments: results	Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalc	ulated

TOTCLC.6

LDC #: 14798A6 SDG #: 06-1826

# VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

	Page:_	of
	Reviewer:	My
2nd	Reviewer:	e

METHOD: Inorganics,	Method ,	See	anu	<del></del>	
The correlation coeffici	ent (r) fo	r the calibration of	_ a	was recalculated. Calibration date:	10/28/03
An initial or continuing	calibratio	on verification perc	ent recovery (%	R) was recalculated for each type of analysic	s using the following formula:
%R = <u>Found</u> x 100 True	Where,			neasured in the analysis of the ICV or CCV solution the ICV or CCV solution	

·			cwel s		Recalculated	Reported	
Type of Analysis	Analyte	·	une (Me) Junits)	(units)	r or %R	r or %R	Acceptable (Y/N)
initial calibration		Blank	Ð	2890			
Calibration verification		Standard 1	0.1	228360			·
	,	Standard 2	0,4	277569			•
		Standard 3	2.0	1437207			4
	d	Standard 4	4,0	3039756	470,998×13	V=0,998>73	<i>J</i> .
		Standard 5	8.0	6322926	( ) ( )		
		Standard 6			*		
		Standard 7					
Calibration verification							V
ccV	ч	410	3.72		93	93	Ψ
Calibration verification		/			AH		
cu	W37V	1.5	1.45		97	96	
Calibration verification	saf	15			4 n	<i>A</i> ,	/
CeV	7	(3	145		' /	96	- <b>1</b>

Comments:	Refer to Calibration	Verification findings workshee	et for list of qualifications a	and associated samples	when reported results do	not agree within 10.0%
of the recalc	ulated results		· · · · · · · · · · · · · · · · · · ·		·	

CALCLC.6

	·			
LDC #: 4798A6 SDG #: 06-18-16	VALIDATION FINDINGS I Sample Calculation V		Page:_ Reviewer:_ 2nd reviewer:_	(of ) MM
METHOD: Inorganics, Method	See come			/
N N/A Are results within	r all questions answered "N". Not in reported and calculated correctly the calibrated range of the instruments below the CRQL?	l).	re identified as "N//	۲.
Compound (analyte) results for		report	ted with a positive	detect were
Concentration =	Recalculation:			
102-12 (AKEL X 5.199 X) XOT-	57+0~22322) 603	N= (764114 XS	7.199× 10-7+ 0.1	/ حدرد
XOT-	•	X12.52	C. 26 mg/.	

#	Sample ID	Analyte	Reported Concentration	Calculated Concentration	Acceptable (Y/N)
	>	Alkaliny	257	757	٧
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	840	840	ť
		Ú. Ú.	84.7	84.7	
		NO3-N	5.3	5.3	
		504	nge	242	V
	`				
<u> </u>					

Note:	 		·
	 	<u> </u>	

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 17, 2006

**LDC Report Date:** 

April 5, 2006

**Matrix:** 

Water

Parameters:

Metals

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1826

Sample Identification

05_DGMW67A-123

#### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Contract Laboratory Program Statement of Work (SOW) for Inorganic Analysis, Multi-concentration, D.N. ILM04.2 for TAL Metals including Molybdenum.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) and incorporates updates per EPA SOW (D.N. ILM04.2); the following subsections correlate to the guidelines.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

All criteria for the initial calibration were met.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

CRDL standards for ICP and AA were analyzed and reported as required.

Instrument detection limits, interelement corrections and linear range analysis were performed at the required frequency.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Arsenic Mercury	1.5 ug/L 0.073 ug/L	All samples in SDG 05-4158
ICB/CCB	Arsenic Barium Beryillum Cadmium Calcium Cobalt Copper Magnesium Manganese Sodium Molybdenum	2.938 ug/L 2.489 ug/L 0.237 ug/L 0.437 ug/L 55.016 ug/L 0.679 ug/L 1.413 ug/L 15.607 ug/L 1.109 ug/L 352.701 ug/L 0.941 ug/L	All samples in SDG 05-4158

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample ID	Analyte	Reported Concentration	Modified Final Concentration
05_DGMW67A-123	Arsenic	5.3 ug/L	5.3U ug/L
	Copper	2.1 ug/L	2.1U ug/L
	Manganese	0.61 ug/L	0.61U ug/L
	Mercury	0.032 ug/L	0.032U ug/L

No field blanks were identified in this SDG.

#### IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

#### V. Matrix Spike Analysis

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

#### VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### VIII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

#### IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

#### X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

#### XI. Sample Result Verification

All sample result verifications were acceptable.

#### XII. Overall Assessment of Data

Data flags have been summarized at the end of this report if data has been qualified.

#### XIII. Field Duplicates

No field duplicates were identified in this SDG.

MCAS El Toro, CTO 084 Metals - Data Qualification Summary - SDG 06-1826

#### No Sample Data Qualified in this SDG

#### MCAS El Toro, CTO 084 Metals - Laboratory Blank Data Qualification Summary - SDG 06-1826

SDG	Sample ID	Analyte	Modified Final Concentration	A or P
06-1826	05_DGMW67A-123	Arsenic Copper Manganese Mercury	5.3U ug/L 2.1U ug/L 0.61U ug/L 0.032U ug/L	A

MCAS El Toro, CTO 084 Metals - Field Blank Data Qualification Summary - SDG 06-1826

No Sample Data Qualified in this SDG

SDG	#: 14798A4 #: 06-1826 atory: <u>Applied Physics</u> 8	<del>-</del> -	Le	PLETENE evel III/IV	SS WORKSI	HEET	Date: 440 L Page: of A
MET	IOD: Dissolved Metals	(EPA CLP SOW I	LMO4.0)		•		2nd Reviewer:
	amples listed below we tion findings worksheet		ch of the fo	ollowing va	lidation areas. V	alidation finding	s are noted in attached
	Validatio	n Area				Comments	
1.	Technical holding times		Δ	Sampling da	ates: 3/11/06		
II.	Calibration		A		, ,		
£11.	Blanks		SW				
IV.	ICP Interference Check S	ample (ICS) Analysis	A				
V.	Matrix Spike Analysis		A	2 M4/	oup for s	1406-1808	
VI.	Duplicate Sample Analysi	s	A	) /		<b>,</b>	
VII.	Laboratory Control Sampl	es (LCS)	A	Les	-		·
VIII.	Internal Standard (ICP-MS	5)	N	shit	Wille	•	
IX.	Furnace Atomic Absorption	n QC	N	7	•		
X.	ICP Serial Dilution		4				·
XI.	Sample Result Verification	1	A	Not reviewe	ed for Level III valida	ition.	
XII.	Overall Assessment of Da	ıta	A				
XIII.	Field Duplicates		, N				
XIV.	Field Blanks		N				
Note:	A = Acceptable N = Not provided/applica SW = See worksheet ed Samples: ** Indicates sa	ble R = Rinsate FB = F	lo compound ield blank IV validation	ТВ	D = Duplica = Trip blank EB = Equipn		
1	0 <del>4_DB</del> MW40-123	11		21		31	
2	-05NEW1-123	12		22		32	
3	05_DGMW67A-123**	13		23		33	
4	PB	14		24		34	
5		15		25		35	
6	<u></u>	16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	
Notes	:  -eva  3= ADR						

#### **VALIDATION FINDINGS CHECKLIST**

Page: 1 of 2 Reviewer: M4-2nd Reviewer:

#### Method: Metals (EPA SOW ILM04.0)

Validation Area	Yes	No	NA	Findings/Comments
Technical holding times				
All technical holding times were met.	V			
Cooler temperature criteria was met.	/			
li, Calibration				
Were all instruments calibrated daily, each set-up time?	1			
Were the proper number of standards used?	5			
Were all initial and continuing calibration verification %Rs within the 90-110% (80-120% for mercury and 85-115% for cyanide) QC limits?	/			
Were all initial calibration correlation coefficients $\geq$ 0.995?	/			
Was a midrange cyanide standard distilled?				
III. Blanks				
Was a method blank associated with every sample in this SDG?	1			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	1			
IV, ICP Interference Check Sample				
Were ICP interference check samples performed as required?	1			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	1			
V. Matrix spikes				
Was a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS. Soil / Water.				
Were the MS percent recoveries (%R) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.				
VI. Duplicate Analyses				
Was a duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated DUP. Soil / Water.				
Were the duplicate relative percent differences (RPD) $\leq$ 20% for waters and $\leq$ 35% for soil samples? A control limit of $\leq$ CRDL( $\leq$ 2X CRDL for soil) was used for samples that were $\leq$ 5X the CRDL, including when only one of the duplicate sample values were $\leq$ 5X the CRDL.	-			
VII. Laboratory control samples				
Was an LCS anaylzed for this SDG?	~			
Was an LCS analyzed per extraction batch?	1			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?				

LDC #:	1479844
SDG #:	06-1826

#### **VALIDATION FINDINGS CHECKLIST**

Page:	2-of_2
Reviewer:_	MIL
2nd Reviewer:_	

Validation Area	Yes	No	NA	Findings/Comments
VIII. Internal Standards (Method 200.8)				
Were all the percent recoveries (%R) within the 60-125% of the intensity of the internsity of the internal standard in the associated initial calibration?			~	
If the %Rs were outside the criteria, was a reanalysis performed?			1	
IX. Furnace Atomic Absorption QC				
If MSA was performed, was the correlation coefficients ≥ 0.995?			~	
Do all applicable analysies have duplicate injections?			1	
For sample concentrations > CRDL, are applicable duplicate injection RSD values < 20%?	-		1	
Were analytical spike recoveries within the 85-115% QC limits?			/	
X. ICP Sarial Dilution				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the IDL?				
Were all percent differences (%Ds) ≤ 10%?				
Was there evidence of negative interference? If yes, professional Judgement will be used to qualify the data.				
XI: Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			\	
Were the performance evaluation (PE) samples within the acceptance limits?			1	
XII. Sample Result Vérification				
Were CRDLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	1			
Were results within the linear range of the ICP?	/			
XIII, Overall assessment of data				
Overall assessment of data was found to be acceptable.	1			
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.		/		
Target analytes were detected in the field duplicates.			1	
XV. Field blanks				
Field blanks were identified in this SDG.		/		
Target analytes were detected in the field blanks.			7	

LDC #: 14798144 SDG #: 06-18-26

#### VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

F	age:_	<u> </u>	Ł	
Revi	ewer:_	. 4	197	•
2nd revi	ewer:_	• ••	又	_
		100	/	

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL):
1-3	_se_	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, NI, K, Se, Ag, Na, TI, V, Zn, Mo B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Nl, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Ma, B, Si, CN
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, NI, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Sì, CN',
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al. Sb. As. Ba. Be. Cd. Ca. Cr. Co. Cu. Fe. Pb. Mg. Mn. Hg. Ni. K. Se. Ag. Na. Tl. V. Zr. Mo. B. Si. CN.
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Sl, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	1	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
ICP Trace		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mb) B, Si, CN,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, NI, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sl, CN,
and the second second		

Comments: Mercury by CVAA if performed

LDC	#:	4798A4
enc	#.	06 1821

#### **VALIDATION FINDINGS WORKSHEET** PB/ICB/CCB QUALIFIED SAMPLES

Page:	of
Reviewer:	Mbr
2nd Reviewer:_	8

METHOD: Trace metals (EPA CLP SOW ILM04.0) Soil preparation factor applied:

Sample Concentration units, unless otherwise noted:

Associated Samples:

ampia c	Oncombanc	ni unius, un	ness onlerv	vise noted: _			_Associated	Samples:	PVI					·
								8	ampia identific	ation				
Analyte	Maximum PB* (mg/Kg)	PB"	Maximum ICB/CCB* (ug/L)	Action	}	702	-d 2					. 	A	
Al		(49/2)	1.09/2/	V		·								
Sb														
As		1.5	2.938	14.69	5.3	6.3	8.8							
Ва			2.489	12,447										
Ве			0.237	12,447										:
Cd			0.437	21185										
Са			55.016	295.08										
Cr													·	
Co			0.619	3.395							, ,		<b> </b>	
Cu			1.413	7.065	2.1	<del>&gt;</del> -7	1.4	· · · · · · · · · · · · · · · · · · ·						
Fe Pb								<del></del>				<u> </u>		·
Mg			15.h. 7	18,035										
Mn				5-545	0.6					<del>-                                    </del>				<del></del>
Hg		0.073	1-1-1-	0.365	0.032	0,827	0,036							
Ni										<u>.</u>				
к											·	. 1		
Se														
Ag			 									<u> </u>	<del> </del>	
Na			352.70	171.35										
П		ļ	<b> </b>											
<u>v</u>		<b> </b>	<u> </u>										<del> </del>	
Zn		<b> </b>	-									<u> </u>		
B Mo			0.94)	4.7.5									<del> </del>	
Sr		<b> </b>	0.74	4, 107				<u> </u>					<del> </del>	
Samples	with analysis	concentratio	ne within five	times the es	sociated ICB	CCB or PB co	Depotration are	a listed shove v	with the identific	stions from the	Validation Con	nnleteness Wo	rksheet These	sample resu

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC #	14798A4
SDG #:	06-1826

#### **VALIDATION FINDINGS WORKSHEET** Initial and Continuing Calibration Calculation Verification

	•	
	Page:_	of
	Reviewer:	MH
nd	Reviewer:	2

METHOD: Trace metals (EPA CLP SOW ILM04.0)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found x 100 True

Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

True = concentration (in ug/L) of each analyte in the ICV or CCV source

·					Recalculated	Reported	
Standard ID	Type of Analysis	Element	Found (ug/L)	True (ug/L)	%R	%R	Acceptable (Y/N)
ZiV	ICP (Initial calibration)	Be	919.9	(000	98.0	980	Y
	GFAA (Initial calibration)						
IN	CVAA (Initial calibration)	Hg	8,143	7.5	1>8.6	108-6	У
cal	ICP (Continuing calibration)	hs.	2056	<b>5</b> 0€0	8,60)	1028	1
	GFAA (Continuing calibration)						
cul	CVAA (Continuing calibration)	Ид	4.53%	· to	90.7	90.7	4
	Cyanide (Initial calibration)						
	Cyanide (Continuing calibration)						

Comments:	Refer to Calibration Verification findings works of the recalculated results.	sheet for list of qualifications a	and associated sampl	les when reporte	d results do r	is do not agree within 10.0%		
	<u>'</u>	·			•			
					·.			

LDC #: 14798A4 SDG #: 06-1876

#### VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Page: of Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Page: Pag

METHOD: Trace metals (EPA CLP SOW ILM04.0)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

%R = Found x 100 True Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

True = Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = \underline{|S-D|} \times 100$  (S+D)/2

Where, S = Original sample concentration

D = Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

 $D = I - SDRI \times 100$ 

Where, I = Initial Sample Result (ug/L)

SDR = Serial Dilution Result (ug/L) (Instrument Reading x 5)

Sample ID	Sample ID Type of Analysis Elec		Found / S / I (units)	True / D / SDR (units)	Recalculated %R / RPD / %D	Reported %R / RPD / %D	Acceptable (Y/N)	
74 <i>K</i> 5	ICP interference check	Zh	931.7	(000)	93.2	932	1	
Los	Laboratory control sample	Se	(0.6	ю	106	l°6		
02 784 M 184	Matrix spike	Cr	(SSR-SR)	260	99	99		
	Duplicate	Mg	37.37	33.05	× 1.0	10		
	ICP serial dilution	Co	125.45	117.9	6-4	6.4	J	

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #:	14798Acf 06-1826
SDG #:	06-1826

Decimal percent solids

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	(of/_
Reviewer:_	MY
2nd reviewer:_	<u> </u>
_	

METHOD: To	race metals (EPA CLP SOW ILM04.0	0)	· ·
Please see q (Y) N N/A (Y) N N/A (Y) N N/A	ualifications below for all questions Have results been reported and Are results within the calibrated Are all detection limits below the	calculated correctly? range of the instruments and	e questions are identified as "N/A".
Detected and following equ	alyte results for	}	were recalculated and verified using the
Concentration =	: <u>(RD)(FV)(Dil)</u> (In. Vol.)(%S)	Recalculation:	
RD = FV = In. Vol. = Dil =	Raw data concentration Final volume (ml) Initial volume (ml) or weight (G) Dilution factor		

#	Sample ID	Analyte	Reported Concentration ( " )	Calculated Concentration ( भू( )	Acceptable (Y/N)
	2	As	5.3	5.3	4
		Ba	51-6	5/4	
		Co	124,000	latoro	
	·	CV	3.2	3,2	
		- Gu	2-	2-1	
	·-·-	The	1819	18-9	
		Mg	34500	34200	
		Mu	0.6	0.6	
	· · · · · · · · · · · · · · · · · · ·	lly.	0.032	0,032	
		Mo 0	74.5	14-5	
		Vi Vi	ンン	2.2	
		K Se	2550	2550	
	·		7.7	7.7	
		Va '	94100	94100	
	·····	V	10,0	(0.0	
	<u>.</u>	- Zh	2-	2-	<u> </u>
-					-
(				<u> </u>	



LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

**CDM Federal** 

April 13, 2006

9444 Farnham Street, Suite 210 San Diego, CA 92123

ATTN: Mr. Michael Higman

SUBJECT: MCAS El Toro CTO 084, Data Validation

Dear Mr. Higman,

Enclosed is the final validation report and Excel qualification sheet for the fractions listed below. This SDG were received on April 5th, 2006.

#### LDC project# 14803:

SDG#

#### Fraction

06-1845

Volatiles (Method CLP SOW OLM04.1) Metals (Method CLP SOW ILM04.2)

Wet Chemistry (Method EPA 300.0, 310.1 and 160.1)

The following deliverables are submitted under this report:

Attachment I Sample ID Cross Reference and Data Review Level
 Attachment II Overall Data Qualification Summary
 Attachment III CDM Database Qualification Summary

Enclosure I

EPA Level III ADR Outliers (including manual review outliers)

The data validation was performed in accordance to the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999 and for Inorganic Data Review, October 2004. Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The following items were evaluated during the review:

- Holding Times
- Sample Preservation
- Cooler Temperatures
- Initial Calibration (Manual Review)
- Continuing Calibration (Manual Review)
- Blanks
- Surrogates
- Internal Standards (Manual Review)
- Matrix Spike/Matrix Spike Duplicates
- Laboratory Control Samples
- Detection and Quantitation Limits



- Detection and Quantitation LimitsField QC Samples

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

## Attachment I

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
20-Mar-2006	BT03-923	06-1845-2	ТВ	5030B	CLP-VOC	m [*]
20-Mar-2006	17NEW1-123	06-1845-1	N	3010A	CLP-Metal	111
20-Mar-2006	17NEW1-123	06-1845-1	. <b>N</b>	5030B	CLP-VOC	III
20-Mar-2006	17NEW1-123	06-1845-1	N	7470A	CLP-Metal	úi
20-Mar-2006	17NEW1-123	06-1845-1	N	GEN PREP	160.1	113
20-Mar-2006	17NEW1-123	06-1845-1	N	GEN PREP	300.0	111
20-Mar-2006	17NEW1-123	06-1845-1	N	GEN PREP	310.1	111
20-Mar-2006	17NEW1-123MS	06-1845-1MS	MS	GEN PREP	300.0	iii
20-Mar-2006	17NEW1-123MSD	06-1845-1MSD	MSD	GEN PREP	300.0	HI
20-Mar-2006	17NEW1-123	06-1845-1RE	N	3010A	CLP-Metal	

## Attachment II

**Overall Data Qualification Summary** 

### **Overall Qualified Results**

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61845		-								
CLP-Metal	17NEW1-123	AQ	N							
				ARSENIC	10	2.0B		ນ	ug/L	
				BARIUM	200	155B		J	ug/L	
				CHROMIUM	10	4.8B		J	ug/L	
				IRON	100	28.6B		J	ug/L	
				MERCURY	0.2	0.16B		U.	ug/L	
				POTASSIUM	5000	3120B		J	ug/L	
				THALLIUM	10	4.4B		U	ug/L	
				VANADIUM	50	6.5B		J	ug/L	
				ZINC	20	13.3B		J	ug/L	
CLP-VOC	17NEW1-123	AQ	N	·					-	
		•		1,2-DICHLOROPROPANE	1 .	1U	•	UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
•	•			CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
				CHLOROETHANE	1	1U		เม	ug/L	
CLP-VOC	BT03-923	AQ	ТВ							
				1,2-DICHLOROPROPANE	1	<b>1</b> U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CARBON TETRACHLORIDE	0.5	0.5U		UJ	ug/L	
				CHLOROETHANE	1 .	1U		IJ	ug/L	
				METHYLENE CHLORIDE	5	0.3J		J	ug/L	



## **Attachment III**

**CDM Database Qualification Summary** 

#### Project No # : 14803

## CDM Federal Program Corporation Reason for Qualified Results SDG Nos. : 61845

Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Detected Qualifier	Non Detected Qualifier	Analyte Name	Reason
61845	17NEW1-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61845	17NEW1-123	CLP-Metal	7439976	U	•	MERCURY	Present in method blank
61845	17NEW1-123	CLP-Metal	7440280	U		THALLIUM	Present in method blank
61845	17NEW1-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61845	17NEW1-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61845	17NEW1-123	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61845	17NEW1-123	CLP-VOC	75003	.,	J	CHLOROETHANE	Continuing calibration percent difference
61845	BT03-923	CLP-VOC	78875		J.	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61845	BT03-923	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61845	BT03-923	CLP-VOC	56235		J	CARBON TETRACHLORIDE	Continuing calibration percent difference
61845	BT03-923	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference

## **Enclosure I**

EPA Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

SDG 06-1845

S	DG#	:: 14803A1 #: 06-1845 atory: <u>Applied Physics 8</u>	-	*	Ĺ			ESS WORKSHEET		Date: 4/tr / 62 Page: _/of /_ Reviewer:  2nd Reviewer:
N	/ETH	IOD: GC/MS Volatiles (	EPA C	LP SOW O	LM04.1)					Znu reviewei
		amples listed below wer tion findings worksheets		wed for eac	ch of the fo	ollowin	ng va	ılidation areas. Validati	on find	dings are noted in attached
		Validation	n Area					Comn	nents	
	l.	Technical holding times			A	Sam	pling d	lates: 3/20/8	6	
	11.	GC/MS Instrument perform	nance cl	neck	4			,		
	111.	IV. Continuing calibration  V. Blanks			A					
	IV.				W			' .		
	V.				lack					
	VI.				A					
	VII.					·				
	VIII.	VIII. Laboratory control samples			4	20	29			
	IX.							,		
	X.	Internal standards			A					
	XI.	Target compound identification	ation		N					
	XII.	Compound quantitation/CF	RQLs		N	<u>.</u>				
	XIII.	Tentitatively identified com	pounds	(TICs)	N					
	XIV.	System performance			N					
ľ	XV.	Overall assessment of dat	a	·	N					·
	XVI.	Field duplicates								
	XVII.	Field blanks			W	TB	· = ·	>		
	Note: /alidate	A = Acceptable N = Not provided/applicat SW = See worksheet ed Samples:		= Rinsate	o compounds eld blank	s detec		D = Duplicate 3 = Trip blank EB = Equipment bla	nk	
ſ	1	17NEW1-123	J 11	064419	MB01		21		31	
Ì		BT03-923	/ 12		,		22		32	
巾	3		13				23		33	·
╟	4		14				24		34	
╟	5		15				25		35	
I	6		16				26		36	
1	7		17				27		37	
11	8		18				28		38	

#### TARGET COMPOUND WORKSHEET

#### METHOD: VOA (EPA SW 846 Method 8260B)

	T	T		
A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachioroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachloroethane*	VV. tsopropytbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLL.
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS. o-Xylene	мммм.
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chioroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	.EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	ттт.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-isopropyltoluene	AAAA. Ethyl tert-butyl ether	บบบบ.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB, tert-Amyl methyl ether	vvv.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

	<b>\</b>	
LDC #	803	41
SDG #:	06-182	5

#### VALIDATION FIN_ IGS WORKSHEET **Continuing Calibration**

	Pa	
	Reviewer:_	<u> </u>
2nd	Reviewer:_	

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| V N N/A | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?
| Y N N/A | Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?

#	Date	Standard ID	Compound	Finding %D (Limit: ≤25.0%)	Finding RRF (Limit ≥0.05)	Associated Samples	Qualifications
	3/21/06	4419201	D	39.8		M+B+	* Luv
			M	85.1			7 7
			0	260		-	
			Q	38.9	- · ·		V
	,		•			•	-
					-		
						-	
<b> </b>							
<u> </u>							
<u> </u>							
<b> </b>			<del></del>				
<u> </u>							
						_	
-		· · · · · · · · · · · · · · · · · · ·					<u> </u>
$\vdash$							
						<u> </u>	
					<del></del>		
		· ·					
				•			
						-	
							-

## Method Blank Outlier Report

Lab Reporting Batch: 61845

Analysis Method : CLP-Metal

Preparation Type: 7470A

Method Blank Lab Sample ID: 06M1174-MB-01

Lab ID: APCL

Analysis Date: 03/22/2006

Preparation Date: 03/22/2006

Preparation Batch: 06M1174H

 MERCURY
 Result
 Reporting Lab Limit
 Lab Qual Comments

 Method Blank Result:
 0.073
 0.2
 ug/L
 B

 ${\bf MERCURY} \ {\bf was} \ {\bf qualified} \ {\bf due} \ {\bf to} \ {\bf method} \ {\bf blank} \ {\bf contamination} \ {\bf in} \ {\bf the} \ {\bf following} \ {\bf associated} \ {\bf samples:}$ 

Client Sample II	Lab Sample ID	Dilution	Result	Lab Qual	Result Units
17NEW1-123	06-1845-1	1	0.16	В	ug/L

Project Number and Name:

6218.084 - EL TORO

ADR 8.0

Report Date: 4/12/2006 17:05

Page 1 of 1

abor	#: 06-1845 atory: Applied Physics	•	ratory	Level III		Page:_ <u> </u> Reviewer:_ 2nd Reviewer:_				
he s	HOD: Dissolved Metals amples listed below wation findings workshee	ere reviewed for ea	2	following validation a	reas. Validation findinç	gs are noted in at				
	Validatio	on Area		Comments						
l.	Technical holding times		Δ	Sampling dates: 3/3	•					
11.	Calibration		A.		•					
111.	Blanks		SW							
IV.	ICP Interference Check	Sample (ICS) Analysis	A							
V.	Matrix Spike Analysis		A	3 013 1840 hom	Sour 06-1875	- + 06-1808				
VI.	Duplicate Sample Analys	sis	A	3.71						
VII.	Laboratory Control Samp	<del>-</del>	A							
VIII.			N	, ut willy						
IX.	Furnace Atomic Absorpt	ion QC	N	3 4						
X.	ICP Serial Dilution		N							
XI.	Sample Result Verification	on	N							
XII.	Overall Assessment of D	ata	A							
XIII.	Field Duplicates		۲							
XIV.	Field Blanks		N							
ote: alidate	A = Acceptable N = Not provided/applic SW = See worksheet ed Samples:	able R = Rinsate	lo compound ield blank	TB ≃ Trip blanl	Duplicate k = Equipment blank					
	17NEW1-123	11		21	31					
2	PB	12		22	32					
3		13		23	33					
١.		14		24	34					
5		15		25	35					
3		16		26	36					
,		17		27	37					
3		18		28	38					
		19		29	39					

LDC	#:_		03A4
SDG	#:	06-	Sus

#### **VALIDATION FINDINGS WORKSHEET** PB/ICB/CCB QUALIFIED SAMPLES

	Page:_	of	
	Reviewer:	Mb	
nd	Paviewer'		

Soil preparation factor applied: METHOD: Trace metals (EPA CLP SOW ILM04.0)

ample (	Concentration	on units, un	less otherv	vise noted:	egje		Associated	Samples:	A11					
								8	ampis identific	ation				
Analyte	Maximum PB* (mg/Kg)	Maximum PB* (ug/L)	Maximum ICB/CCB* (ug/L)	Actor lew/										
A)														
Sb														
As			1.663	8.315	210									
Ba			2.860	14.3									·	
Ве			0,385	1925										
Cd				3.725								· · · · · · · · · · · · · · · · · · ·		
Ca							`				·	<u></u>		
Cı														<u> </u>
Co														
Cu .										<b></b>			·	
Fe				76.935			ļ		<u> </u>				<u> </u>	ļ
Pb			1.055	5.275									ļ	<u> </u>
Mg								·					ļ	ļ
Mn			1436										ļ	
Hg		0,073		0.365	0.16		·						<u> </u>	ļ
Ni				]			·						<u> </u>	<u> </u>
κ				ļ								<u> </u>		<u> </u>
Se				<u> </u>								<u> </u>		
Ag			1,263	6.315				ļ	<u> </u>				ļ.,	
Na		<b>]</b>	<u></u>			<u> </u>			ļ					<del> </del>
n		<u></u>	2.002	1000	4.4	ļ	ļ	<u> </u>	<u> </u>					<u> </u>
V	<b></b>	<b> </b>	<b></b>	<b></b>			<u> </u>	ļ				<u> </u>	<b></b>	<u> </u>
Zn	<b> </b>	<b></b>	ļ	<b> </b>			<u> </u>	ļ					<u> </u>	<u> </u>
В		<b></b>	<u> </u>	<b> </b>		<b></b>	<u> </u>		<u> </u>	<u> </u>	ļ		<del> </del>	
Мо					·			1	<u> </u>					<b></b>
12		<u> </u>	<u> </u>	<u> </u>			1		with the Identific	<u> </u>	<u> </u>		<u> </u>	<u></u>

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

BLNKSMP.4C4

## Reporting Limits Outlier Report (detected results reported below the reporting limit)

Lab Report Batch: 61845

Lab ID: APCL

Client Sample ID	Lab Sample ID	Analysis Method	Matrix	Analyte Name	Lab Qualifier	Result	EDD Reporting Limit	l Units
17NEW1-123	06-1845-1	CLP-Metal	AQ	ARSENIC	В	2.0	10	ug/L
				BARIUM	В	155	200	ug/L
				CHROMIUM	В	4.8	10	ug/L
			· · · · · · · · · · · · · · · · · · ·	IRON	В	28.6	100	ug/L
		*. ·		MERCURY	В	0.16	0.2	ug/L
1	06-1845-1RE			POTASSIUM	В	3120	5000	ug/L
	06-1845-1			THALLIUM	В	4.4	10	ug/L
	•••••		·····	VANADIUM	В	6.5	50	ug/L
				ZINC	В	13.3	20	ug/L
BT03-923	06-1845-2	CLP-VOC	<del></del>	METHYLENE CHLORIDE	J	0.3	5	ug/L



LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

CDM Federal

April 13, 2006

9444 Farnham Street, Suite 210 San Diego, CA 92123

ATTN: Mr. Michael Higman

SUBJECT: MCAS El Toro CTO 084, Data Validation

Dear Mr. Higman,

Enclosed is the final validation report and Excel qualification sheet for the fractions listed below. This SDG were received on April 7th, 2006.

#### LDC project# 14811:

SDG#	<u>Fraction</u>			
06-1896	Volatiles (Method CLP SOW OLM04.1) TPH-Gas (Method SW 846 8015B) TPH-Diesel (Method SW 846 8015B)			

The following deliverables are submitted under this report:

•	Attachment I	Sample ID Cross Reference and Data Review Level				
•	Attachment II	Overall Data Qualification Summary				
•	Attachment III	CDM Database Qualification Summary				
•	Enclosure I	EPA Level III ADR Outliers (including manual review outliers)				
•	Enclosure II	EPA Level IV DVR (manual review)				

The data validation was performed in accordance to the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999 and for Inorganic Data Review, October 2004. Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using

professional experience. The following items were evaluated during the review:

___

- Holding TimesSample Preservation
- Cooler Temperatures
- Initial Calibration (Manual Review)
- Continuing Calibration (Manual Review)
- Blanks
- Surrogates
- Internal Standards (Manual Review)
- Matrix Spike/Matrix Spike Duplicates
- Laboratory Control Samples



- Detection and Quantitation Limits
- Field QC Samples

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

## Attachment I

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
22-Mar-2006	16_MW13-123	06-1896-3	N	3510C	8015B DRO	111
22-Mar-2006	16_MW13-123	06-1896-3	<b>N</b> .	5030B	8015B GRO	III
22-Mar-2006	16_MW13-123	06-1896-3	· N	. 5030B	CLP-VOC	u
23-Mar-2006	16_MW3-123	06-1896-1	N	3510C	8015B DRO	III
23-Mar-2006	16_MW3-123	06-1896-1	N	5030B	8015B GRO	m
¹ 23-Mar-2006	16_MW3-123	06-1896-1	N	5030B	CLP-VOC	111
23-Mar-2006	16_MW3-123MS	06-1896-1MS	мѕ	5030B	8015B GRO	111
23-Mar-2006	16_MW3-123MSD	06-1896-1MSD	MSD	5030B	8015B GRO	10
23-Mar-2006	16_MW8-123	06-1896-2	N	3510C	8015B DRO	IV
23-Mar-2006	16_MW8-123	06-1896-2	N	5030B	8015B GRO	IV
23-Mar-2006	16_MW8-123	06-1896-2	N	5030B	CLP-VOC	IV
23-Mar-2006	BT6-923	06-1896-4	ТВ	5030B	CLP-VOC	III

## **Attachment II**

**Overall Data Qualification Summary** 

#### **Overall Qualified Results**

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc <i>l</i> Error	Overall Qualifier	Units	Reason Code
SDG: 61896						-				
8015B GRO	16_MW13-123	AQ	N	·					·	
		·	·	PHC AS GASOLINE	0.05	0.05J		U	mg/L	
8015B GRO	16_MW3-123	AQ	N							
·				PHC AS GASOLINE	0.05	0.04J		U	mg/L	
8015B GRO	16_MW8-123	AQ	N	•						
		•		PHC AS GASOLINE	0.05	0.06		U	mg/L	
CLP-VOC	16_MW13-123	AQ	N	·						
•				1,1-DICHLOROETHANE	1	1U .		UJ -	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	•
				TETRACHLOROETHENE	1	1U		· UJ	ug/L	•
CLP-VOC	16_MW3-123	AQ	N							
	<del>-</del>			1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	
CLP-VOC	16_MW8-123	AQ	N	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •				
	_			1,1-DICHLOROETHANE	1	<b>1</b> U		UJ	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		· UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
	•	•		TETRACHLOROETHENE	1	1Ü		· UJ	ug/L	



# Overall Qualified Results

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61896										
CLP-VOC	BT6-923	ΑQ	ТВ							<b></b>
	•			1,1-DICHLOROETHANE	1	1U		UJ .	ug/L	
•	•			1,2-DICHLOROPROPANE	1	10		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
	·			CHLOROETHANE	1	1U		UJ	ug/L	
a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l				DICHLORODIFLUOROMETHANE	1	<b>1</b> U		UJ	ug/L	
			,	TETRACHLOROETHENE	. 1	· 1U		UJ	ug/L	

# **Attachment III**

**CDM Database Qualification Summary** 

### Project No # : 14811

# CDM Federal Programs Corporation Reason for Qualified Results SDG Nos.: 61896

Non
Detector

Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Detected Qualifier	Detected Qualifier	Analyte Name	Reason
61896	16_MW13-123	8015B GRO	8006619	U		PHC AS GASOLINE	Present in method blank
61896	16_MW13-123	CLP-VOC	75343		j	1,1-DICHLOROETHANE	Continuing calibration percent difference
61896	16_MW13-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61896	16_MW13-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61896	16_MW13-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61896	16_MW13-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61896	16_MW13-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61896	16_MW3-123	8015B GRO	8006619	U		PHC AS GASOLINE	Present in method blank
61896	16_MW3-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61896	16_MW3-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61896	16_MW3-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61896	16_MW3-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61896	16_MW3-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61896	16_MW3-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61896	16_MW8-123	8015B GRO	8006619	U		PHC AS GASOLINE	Present in method blank
61896	16_MW8-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61896	16_MW8-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61896	16_MW8-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61896	16_MW8-123	CLP-VOC	75003		٦.	CHLOROETHANE	Continuing calibration percent difference
61896	16_MW8-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61896	16_MW8-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61896	BT6-923	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61896	BT6-923	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61896	BT6-923	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61896	BT6-923	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61896	BT6-923	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61896	BT6-923	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
		· · · · · · · · · · · · · · · · · · ·					

# **Enclosure I**

# **EPA Level III ADR Outliers** (including Manual Review Outliers)

# Quality Control Outlier Reports

SDG 06-1896

## Method Blank Outlier Report

Lab Reporting Batch: 61896

Lab ID: APCL

Analysis Method: 8015B GRO

Analysis Date: 03/27/2006

Preparation Type: 5030B

Preparation Date: 03/27/2006

Method Blank Lab Sample ID: 06G1460-MB-01

Preparation Batch: 06G1460

		Reporting		Lab -	
PHC AS GASOLINE	Result	Limit	Units	Qual	Comments
Method Blank Result:	0.02	0.05	mg/L	٦	

PHC AS GASOLINE was qualified due to method blank contamination in the following associated

samples:

Client Sample ID	Latr Sample-ID	Dilution	Result:	Lab Qual	Result Units
16_MW13-123	06-1896-3	1	0.05	J	mg/L
16_MW3-123	06-1896-1	1	0.04	j	mg/L
16_MW8-123	06-1896-2	1	0.06		mg/L

## METHOD BLANK OUTLIER REPORT PAGE 2 OF 2

THIS PAGE IS NOT AVAILABLE.

EXTENSIVE RESEARCH WAS PERFORMED BY NAVFAC SOUTHWEST RECORDS OFFICE TO LOCATE THE MISSING PAGE. THIS PAGE HAS BEEN INSERTED AS A PLACEHOLDER AND WILL BE REPLACED SHOULD THE MISSING ITEM BE LOCATED.

FOR ADDITIONAL INFORMATION, CONTACT:

DIANE C. SILVA, RECORDS MANAGER
NAVAL FACILITIES ENGINEERING COMMAND, SOUTHWEST
1220 PACIFIC HIGHWAY
SAN DIEGO, CA 92132

TELEPHONE: (619) 556-1280 E-MAIL: diane.silva@navy.mil

# Reporting Limits Outlier Report (detected results reported below the reporting limit)

Lab Report Batch: 61896

Lab ID: APCL

						•		EDD	
Client Sample ID	Lab Sample ID	Analysis Method	Matrix	Analyte Name		Lab Qualifier	Result	Reporting Limit	Units
16_MW3-123	06-1896-1	8015B GRO	AQ	PHC AS GASOLINE	,	J	0.04	0.05	mg/L

roject Number and Name:

6218.084 - EL TORO

ADR 8.0

Report Date: 4/12/2006 17:32

LDC #:_	14811A1	<b>VALIDATION COMPLETENESS WORKSHEET</b>
200 #.	00.4000	1 1 11/1/1 1 1

Laboratory: Applied Physics & Chemistry Laboratory

METHOD: GC/MS Volatiles (EPA CLP SOW OLM04.1)

Reviewer: 2nd Reviewer

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
ı.	Technical holding times	_4	Sampling dates: 3/23/06, 24 3/25/06
_11	GC/MS Instrument performance check	$\forall$	
111.	Initial calibration	4	
IV.	Continuing calibration	FW	
V.	Blanks	A	
VI.	Surrogate spikes	$\triangleleft$	
VII.	Matrix spike/Matrix spike duplicates	2	Nove P
VIII.	Laboratory control samples	A	2007
IX.	Regional Quality Assurance and Quality Control	N	
Х.	Internal standards	4	
XI.	Target compound identification	4	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	_ #	Not reviewed for Level III validation.
XIII.	Tentitatively identified compounds (TICs)	<b>d</b>	Not reviewed for Level III validation.
XIV.	System performance	#	Not reviewed for Level III validation.
XV.	Overall assessment of data	A	
XVI.	Field duplicates	N	
XVII.	Field blanks	NO	TB=4

Note:

ND = No compounds detected

D = Duplicate

A = Acceptable ND
N = Not provided/applicable R = Rinsate
SW = See worksheet FB

FB = Field blank

TB = Trip blank EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation

1	16_MW3-123 W	11	OFFITIMBOL	21	31
2	16_MW8-123**	12		22	32
3	16_MW13-123	13_		23	 33
4	BT6-923	14		24	 34
5		15	<u> </u>	25	35
6		16		26	 36
7		17	· .	27	37
8		18	·	28	 38
9		19		29	39
10		20_		30	 40

#### TARGET COMPOUND WORKSHEET

### METHOD: VOA (EPA SW 846 Method 8260B)

A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichiorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachioroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLL
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS. o-Xylene	мммм.
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB, 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW, Ethanol	<u>.</u>
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	1111.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG, p-Isopropyttoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB, tert-Amyl methyl ether	vvv.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

LDC #: 128114 SDG #:06-1896

# VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| NA | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y IN N/A Were all percent differences (%D) < 25% and relative response factors (RRF) > 0.05?

#	Date	Standard ID	Compound	Finding %D (Limit: <25.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	3/29/06	\$ HT1201	11	30.4	•	M+Bdc	Vu-VA
	/ /		A	40.3			
			工業	26.3	·		
			M	81.9			
<u> </u>		<u> </u>	<u> </u>	40.1			
<b>]</b>			AA #	26.0	•		V
			5		0.66 (20 30)		NO NO
<b> </b>	· ·	•					/
<u></u>							
<b> </b>							
<b> </b>		** ccc. (	20-11-)				
<b> </b>		· · · · · · · · · · · · · · · · · · ·					
<b> </b>	ļ	· · · · · · · · · · · · · · · · · · ·					
<b> </b>							
<b> </b>						· · · · · · · · · · · · · · · · · · ·	
<b> </b> -		 				<del> </del>	
<b> </b>				<u> </u>			
<b> </b>						<u> </u>	
<b> </b> -		<u> </u>					
<b> </b>			· · · · · · · · · · · · · · · · · · ·				
<b> </b>	<del> </del>						
<b> </b> -	<del> </del>						
-	<del> </del>	<del></del>					
-		<u> </u>					
	<del> </del>	<del></del>					
		<u> </u>					
<u> </u>	<u> </u>			<u> </u>		· ·	•

# Enclosure II

# **EPA Level IV Validation Reports**

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 23, 2006

**LDC Report Date:** 

April 11, 2006

**Matrix:** 

Water

Parameters:

Volatiles

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1896

Sample Identification

16 MW8-123

#### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Contract Laboratory Program Statement of Work (SOW) OLM04.1 for Volatiles.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999); the following subsections correlate to the above guidelines.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
3/29/06	Dichlorodifluoromethane Chloroethane 1,1-Dichloroethane 2-Butanone 1,2-Dichloropropane Tetrachloroethene	30.4 40.3 26.3 81.9 40.1 26.0	All samples in SDG 06-1896	J (all detects) UJ (all non-detects)	А

All of the continuing calibration RRF values were within validation criteria.

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

No field blanks were identified in this SDG.

#### VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the SOW. All surrogate recoveries were within QC limits.

#### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VIII. Laboratory Control Samples (LCS)

Although laboratory control samples were not required by the method, laboratory control samples were reported by the laboratory. Percent recoveries (%R) were within QC limits.

#### IX. Regional Quality Assurance and Quality Control

Not applicable.

#### X. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XI. Target Compound Identifications

All target compound identifications were within validation criteria.

#### XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

#### XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria.

#### XIV. System Performance

The system performance was within validation criteria.

#### XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### XVI. Field Duplicates

No field duplicates were identified in this SDG.

### MCAS El Toro, CTO 084 Volatiles - Data Qualification Summary - SDG 06-1896

SDG	Sample	Compound	Flag	A or P	Reason
06-1896	16_MW8-123	Dichlorodifluoromethane Chloroethane 1,1-Dichloroethane 2-Butanone 1,2-Dichloropropane Tetrachloroethene	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)

MCAS El Toro, CTO 084 Volatiles - Laboratory Blank Data Qualification Summary - SDG 06-1896

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084 Volatiles - Field Blank Data Qualification Summary - SDG 06-1896

No Sample Data Qualified in this SDG

SDG a Labora  METH  The sa	#:14811A1 #:06-1896 atory: <u>Applied Physics &amp; (</u> IOD: GC/MS Volatiles (El amples listed below were tion findings worksheets.	<u>Chem</u> PA CI	_P SOW C	Loratory PLM04.1)	evel	HH/H	¥1V					Rev 2nd Rev		20f/  -
	Validation A	Агеа			Γ				Comi	ment	s			
1.	Technical holding times			4	San	npling	dates:	3	123/06		夿		<u></u>	
11.	GC/MS Instrument performar	nce ch	eck	A		<u> </u>			/	· · · · ·				
101.	Initial calibration			4				•						
IV.	Continuing calibration			EW						•				
V.	Blanks			4										
VI.	Surrogate spikes			∢						•				
VII.	Matrix spike/Matrix spike dup	licates	,	NA	K	au	2/7	_ 0.	2- <i>N</i> Sh	12-	123	126	-18	<del>(25</del>
VIII.	Laboratory control samples			$\triangleleft$	2	00	2						7	
IX.	Regional Quality Assurance a	and Qu	ality Control	N			<u>-</u> -							
X.	Internal standards			_4										
XI.	Target compound identification	on		4	Not	review	ed for Le	evel III va	alidation.					
XII.	Compound quantitation/CRQI	Ls		_+	Not reviewed for Level III validation.									
XIII.	Tentitatively identified compo	unds (	TICs)	4	Not	review	ed for Le	vel III va	alidation.					
XIV.	System performance			4	Not	review	red for Le	vel III va	lidation.					
XV.	Overall assessment of data			Ā					······································					
XVI.	Field duplicates			a)		•	<del></del>					· · · ·		
XVII.	Fleid blanks			N I				<del></del>				<u> </u>	<u> </u>	
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet		Rinsate FB = Fie	compounds	dete		3 = Trip t		licate uipment bla	nk		•		
validated	d Samples: ** Indicates sample	e unde	went Level I	validation			<u> </u>							
1 1	6_MW3-123 W 1	11 6	66XT	MBO		21			1	31				

-							
1_	16_MW3-123 W	11	OFFITIMBOL	21	1	31	
2	16_MW8-123**	12		22		32	
3_	16_MW13-123	13		23		33	
4_	BT0-923	14		24		34	
5_	<u> </u>	15		25		35	
6		16		26	·	36	
7		17	<u> </u>	27		37	
8		18		28		38_	
9		19		29	•	39	
10		20		30		40_	

LDC #: 4811A SDG #: 06-1896

#### **VALIDATION FINDINGS CHECKLIST**

Page: /of 3
Reviewer: 4
2nd Reviewer: 6

니 고 Method: Volatiles (EPA CLP SOW OLMO<del>8.1</del>)

Validation Area	Yes	No	NA	Findings/Comments
ts Technical holding times				
All technical holding times were met.	1			
Cooler temperature criteria was met.	1			
III. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?	/			
III, Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/		L	
Were all percent relative standard deviations (%RSD) $\leq$ 30% and relative response factors (RRF) $\geq$ 0.05?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			·
Were all percent differences (%D) $\leq$ 25% and relative response factors (RRF) $\geq$ 0.05?		/		
V Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VI Surrogate spikes				
Were all surrogate %R within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VII, Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				,
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			1	
VIII. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?	/[			

DC#: 14811A

### VALIDATION FINDINGS CHECKLIST

Page: 2 of 3
Reviewer: 2
2nd Reviewer: 2

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/	1		
X: Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?	_	/	1	
Were the performance evaluation (PE) samples within the acceptance limits?			$\mathbb{L}$	
X, internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?	1			
Were retention times within $\pm$ 30 seconds of the associated calibration standard?	/			
Xi: Terget compound identification				
Were relative retention times (RRT's) within $\pm$ 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				l.
XII. Compound quantitation/CRQLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Tentstively identified compounds (TICs)				
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				
Were relative intensities of the major ions within $\pm$ 20% between the sample and the reference spectra?			/	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
XIV. System performance				
System performance was found to be acceptable.				
(V. Overall assessment of data)				
Overall assessment of data was found to be acceptable.	/	Ì		
XVE Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates,			/	

LDC #: 148 | 14 | SDG #: 06 | 1896

#### **VALIDATION FINDINGS CHECKLIST**

Page: 3 of 3
Reviewer: 9
2nd Reviewer: 9

Validation Area	Yes	No	NA	Findings/Comments
XVII; Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

### TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA CLP SOW OLM04.2)

f		A V. 1 4.1 I	Land B	
A. Chioromethane*	Q. 1,2-Dichloropropane**	GG. Xylenes, total	WW. Bromobenzene	MMM. Naphthalene
B. Bromomethane	R. cis-1,3-Dichloropropene	HH. Vinyl acetate	XX. 1,2,3-Trichloropropane	NNN. 1,2,3-Trichlorobenzene
C. Vinyl charide**	S. Trichloroethens	li. 2-Chioroethylvinyl ether	YY. n-Propylbenzene	OOO, 1,3,5-Trichlorobenzene
D. Chloroethane	T. Dibromochioromethane	JJ, Dichlorodifluoromethane	ZZ. 2-Chlorotoluene	PPP. trans-1,2-Dichloroethene
E. Methylene chloride	U. 1,1,2-Trichloroethans	KK. Trichlorofluoromethane	AAA. 1,3,5-Trimethylbenzene	QQQ, cls-1,2-Dichlorosthene
F. Acetone	V. Benzene	LL. Methyl-tert-butyl ether	BBB. 4-Chlorotoluene	RRR. m,p-Xylenes
G. Carbon disulfide	W. trans-1,3-Dichloropropene	MM. 1,2-Dibromo-3-chioropropane	CCC. tert-Butylbenzene	SSS. o-Xylene
H. 1,1-Dichloroethene**	X. Bromoform*	NN, Diethyl ether	DDD. 1,2,4-Trimethylbenzene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane
l. 1,1-Dichloroethane*	Y. 4-Methyl-2-pentanone	OO. 2,2-Dichloropropane	EEE. sec-Butylbenzene	UUU. Benzyl chloride
J. 1,2-Dichloroethene, total	Z. 2-Hexanone	PP. Bromochloromethane	FFF. 1,3-Dichlorobenzene	VVV. 4-Ethyltoluene
K. Chloroform**	AA. Tetrachioroethene	QQ. 1,1-Dichloropropene	GGG. p-isopropyitoluene	WWW. Ethanol
L. 1,2-Dichloroethane	BB. 1,1,2,2-Tetrachloroethane*	RR. Dibromomethane	HHH. 1,4-Dichlorobenzene	XXX. Ethyl ether
M. 2-Butanone	CC. Toluene**	SS. 1,3-Dichloropropane	III. n-Butylbenzene	
N. 1,1,1-Trichloroethans	DD. Chlorobenzene*	TT. 1,2-Dibromoethane	JJJ. 1,2-Dichlorobenzene	
O. Carbon tetrachloride	EE. Ethylbenzene**	UU. 1,1,1,2-Tetrachloroethane	KKK. 1,2,4-Trichlorobenzene	
P. Bromodichloromethane	FF. Styrene	VV. Isopropylbenzene	LLL. Hexachiorobutadiene	

* ==	System pe	erformance	check co	mpounds	(SPCC	) for HH	-; **	· =	Calibration	check	compounds	(CCC)	for	%RS	D.

Notes:			•	
* * * * * * * * * * * * * * * * * * *	· · · · · · · · · · · · · · · · · · ·	<del></del>	<del></del>	
			<del></del>	
	<del></del>	<del></del>		

LDC #: HOUA! SDG #: 06-1896

### VALIDATION FINDINGS WORKSHEET Continuing Calibration

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N N/A | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y IN N/A Were all percent differences (%D)  $\leq$  25% and relative response factors (RRF)  $\geq$  0.05?

#	Date	Standard ID	Compound	Finding %D (Limit: <u>&lt;</u> 25.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	- Qualifications
	3/29/06	\$ HT1201	77	30.4		M+Bdc	1/4-/EA
	/ /		Ð	40.3			
			I m	26.3			
			М	81.9			
		<u>: : : : : : : : : : : : : : : : : : : </u>	- A	40.1			
			AA **	06.0	•		V
			9 ##		0266 (30,50)		tout 1
							-
						-	
		** ~ ~ (	zact 19				
				·		·	
				<u> </u>			
				•			
						•	
	_:		·				
						·	
		<u> </u>				•	
				•	• -	. •	•
				·			

LDC #: 18118 | SDG #:06-1896

# VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	_/of_/
Reviewer:_	<u>a-</u>
2nd Reviewer:	2

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF =  $(A_n)(C_h)/(A_h)(C_n)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)  $A_x =$ Area of compound,

A_k = Area of associated internal standard

C_x = Concentration of compound, S = Standard deviation of the RRFs C₁ = Concentration of internal standard

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (†0 std)	RRF (   O std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	12/0/1	Methylene chloride (1st internal standard)	1.996	1.996	2,087	780.c	4.90	1.89
	, - / , -	12/9/04	Trichiorethene (2nd internal standard)	0.294	0.294	0.303	0.303	6.72	6.70
			Toluene (3rd internal standard)	1.507	1.507	1.518	1.518	4.46	4.46
2			Methylene chloride (1st internal standard)						
			Trichlorethene (2nd internal standard)						
			Toluene (3rd Internal standard)						
3			Methylene chloride (1st internal standard)					-	
			Trichlorethene (2nd internal standard)						
			Toluene (3rd internal standard)						
4			Methylene chloride (1st internal standard)					·	
			Trichlorethene (2nd Internal standard)						
			Toluene (3rd Internal standard)						

Comments: Refer to Initial	Calibration findings	worksheet for list of qu	ualifications and	associated samples	when reported	results do not	agree within	10.0% of the
recalculated results.								

LDC #: 1811A | SDG #: 06 - 1896

### VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	_/of_/_
	Reviewer:	<u> </u>
2nd	Reviewer:	8
	_	

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_h)/(A_h)(C_x)$ 

RRF = continuing calibration RRF

A, = Area of compound,

A_a = Area of associated internal standard

 $C_x = Concentration of compound,$ 

C. = Concentration of Internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	<b>%</b> D	%D
1	GIATIRO1	2/2/1	Methylene chloride (1st internal standard)	2.087	2.160	2.160	3.5	3.5
		2/34/06	Trichlorethene (2nd internal standard)	0.303	0.266	0.266	12.0	1-1
			Toluene (3rd internal standard)	1.578	1.545	1.545	1.8	1.8
2			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)		·			
з			Methylene chloride (1st internal standard)					·
			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)					
4			Methylene chloride (1st internal standard)	,				
		1	Trichicrethene (2nd internal standard)					•
			Toluene (3rd internal standard)					

Comments:	Refer to C	ontinuing	<u>Calibration</u>	findings	worksheet	for list o	of qualifications	and	associated	samples v	<u>when</u>	reported	results	do no	t agree w	rithin :	10.0%
of the recalc	ulated resi	ults.															
							•										

CONCLC.1C4

LDC #: 1481 14 SDG #: 06 - 1896

# VALIDATION FINDINGS WORKSHEET <u>Surrogate Results Verification</u>

Page:	
Reviewer:	a-
2nd reviewer:	V

JETHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent recoveries (%R) of surrogates were recalculated for	or the compounds identified below using the following calculation:
-----------------------------------------------------------------	--------------------------------------------------------------------

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery Recalculated	Percent Difference	
			Reported	Recalculated		
Toluene-d8	(0	9.86	.99	99	0	
Bromofluorobenzene		9.35	ak	at	1 1	
1,2-Dichloroethane-d4	V	10.52	105	105		

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Percent Recovery		Percent Difference
			Reported	Recalculated	
Toluene-d8		•			
Bromofluorobenzene	•				
1,2-Dichloroethane-d4					

Sample ID:_

	, 'Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8		. !			
Bromofluorobenzene	·	:			
1,2-Dichloroethane-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					

LDC #: 148(1A) SDG #:06-1896

# VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	
Reviewer:_	9
2nd reviewer:	- Lo
<del></del> .	

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

N N/A Were all reported re

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

Concentration = (A,)(L)(DF) (A,)(RRF)(V)(%S) Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms (ng) RRF Relative response factor of the calibration standard. ٧. Volume or weight of sample pruged in milliliters (ml) or grams (g). Df Dilution factor. Percent solids, applicable to soils and solid %\$ matrices only.

Conc. = (9401)( (0)( /)
(33878(1.910)( )( )
-1.45 M

	matrices orly.				
#	Sample ID	Compound	Reported Concentration ( )	Calculated Concentration ( )	Qualification
	·		· · · · · · · · · · · · · · · · · · ·		
				} 	<u> </u>
		 <del> </del>		·	
				<del></del>	
		<del></del>		:	
		, 	<del></del>		
				·	
		<del></del>			
		<del></del>			
$\dashv$					
		·			

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 23, 2006

**LDC Report Date:** 

April 11, 2006

Matrix:

Water

Parameters:

Total Petroleum Hydrocarbons as Gasoline

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1896

Sample Identification

16_MW8-123

#### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8015B for Total Petroleum Hydrocarbons (TPH) as Gasoline.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

#### a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than or equal to 20.0% .

#### b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No total petroleum hydrocarbons as gasoline contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound	Concentration	Associated Samples
06G1460MB01	3/27/06	TPH as gasoline	0.02 mg/Kg	All samples in SDG 06-1896

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
18_MW8-123	TPH as gasoline	0.06 ug/L	0.06U ug/L

No field blanks were identified in this SDG.

#### IV. Accuracy and Precision Data

#### a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

#### b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### V. Target Compound Identification

All target compound identifications were within validation criteria.

#### VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

#### VII. System Performance

The system performance was acceptable.

#### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### IX. Field Duplicates

No field duplicates were identified in this SDG.

MCAS El Toro, CTO 084 Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 06-1896

### No Sample Data Qualified in this SDG

#### MCAS El Toro, CTO 084

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 06-1896

SDG	Sample	Compound	Modified Final Concentration	A or P
06-1896	16_MW8-123	TPH as gasoline	0,06U ug/L	Α

#### MCAS El Toro, CTO 084

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 06-1896

No Sample Data Qualified in this SDG

SDG #:	#: 14811A7 VALIDATION COMPLETENESS WORKSHEET #: 06-1896 Level HI/IV ( V							Date: 4/11/02 Page: _/of /_ Reviewer:				
METHO	THOD: GC TPH as Gasoline (EPA SW846 Method 8015B)						2nd Reviewer:					
The san		•				yal	idation areas. Valid	ation findi	ngs are noted in attached			
	Validation	Area			1		Cor	nments	·			
1.	Technical holding times			lack			3/23/06					
lla.	Initial calibration		·	lack								
IIb.	Calibration verification			-A								
III.	Blanks			₩.								
IVa.	Surrogate recovery			4	<u> </u>		·		· ,			
IVb.	Matrix spike/Matrix spike dup	licate	s	<u> </u>	<u> </u>		·	<u></u> .				
IVc.	Laboratory control samples			A	10	بح	10					
<u>v</u>					d for Level III validation.	, ,						
VI.	Compound Quantitation and	CRQI	_S	_⋪	Not rev	iewe	d for Level III validation.					
VII.	/II. System Performance				Not reviewed for Level III validation.							
VIII.				4								
IX.	C. Field duplicates											
X	Field blanks											
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet    Samples: ** Indicates samp		= Rinsate FB = Fi	o compound eld blank IV validation			D = Duplicate = Trip blank EB = Equipment	blank				
		11	065146			1		31				
2 10	6_MW8-123**	12			2	2		32				
3 tt	8_MW13-123	13			2	3		33				
4 10	6_MW3-123M3-	14			2	4		34				
5 16	6_MW3-123MSD	15 _			2	5		35				
6		16			2	6	<u></u>	36				
7		17			2	7		37				
8		18			2	8		38				
9		19			2	9		39				
10		20	30 40									
Notes:												

LDC#:<u>1481148</u> 3DG#:<u>06-1896</u>

### **VALIDATION FINDINGS CHECKLIST**

Method: GC HPLC	·			
Validation Area	Yes	No	NA.	Findings/Comments
Prijestingsalledujud textes				
All technical holding times were met.		·		
Cooler temperature criteria was met.			22,000	
Marintian apporation				14.5
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) ≤ 20%?		:		
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?				
Did the initial calibration meet the curve fit acceptance criteria?				
Were the RT windows properly established?			S CERTIFICATION	
W. Communing scaling highly				
What type of continuing calibration calculation was performed?%D or%R				
Was a continuing calibration analyzed daily?		.		
Were all percent differences (%D) ≤ 15%.0 or percent recoveries 85-115%?				
Were all the retention times within the acceptance windows?			Laka Barr	
V Blanks				
Was a method blank associated with every sample in this SDG?	_		-	
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	1831 E 244			
W/SurosaleSpikes 180.75				
Were all surrogate %R within the QC limits?	/	·		
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?	2-RAN EN ST	D-2010-27-03		
VII. Mainx spike Wainx spike analicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?		/		
Were the MS/MSD percent recoverles (%R) and the relative percent differences (RPD) within the QC limits?				
Will Stalkonatoly control controlled to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	//			



### **VALIDATION FINDINGS CHECKLIST**

Page: of Reviewer: 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X Regional examinate please abordinally control and a second solutions.				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
X/Clatelutomacaediaecilinestion				
Were the retention times of reported detects within the RT windows?				
XI-compound quantitation/GROLS to 12.2				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII Statemperiormatice:				
System performance was found to be acceptable.	6			
XIII X Berall disassiment o adata a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la granda a sur la gra				
Overall assessment of data was found to be acceptable.				
XIV:FEGODDIESE: A PARTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE				
Were field duplicate pairs identified in this SDG?				
Were target compounds idetected in the field duplicates?			7	
alolis and				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?			7	

LDC #:14311AT SDG #:06-1896 METHOD: GC	HPLC	VAL		IDINGS WORI <u>Blanks</u>	KSHEET		F 2nd F	Page:of Reviewer:
Y N N/A Was a med Y N N/A Was a med W N N/A Were any of Level IV/D Only Y N N/A (Gasoline a	amples associated thod blank perform thod blank perform contaminants four and aromatics only thod blank analyze	I with a given met ned for each matr ned with each ext nd in the method b y)Was a method b	hod blank? ix and whenever raction batch? blanks? If yes, p blank analyzed w ical / extraction t	r a sample extract lease see finding with each 24 hour patch of ≤20 sam	tion procedure was s below. batch?			
Compound	Blank ID				Sample Identification	n	<u> </u>	
06	F1460 MB01	1/1	2.	3/1				
ERD.	0.02	0.ga/d.05U	0.06/U	0.64/N				
	<u> </u>							
							· ·	
<u></u>	<u> </u>							
Blank extraction date:	Blank a	nnalysis date:		<del></del>	clated samples:			
Compound	Blank ID			S	Sample Identification	1	·	<del>,</del>
								<b>_</b>
							<u> </u>	
			· · · · · · · · · · · · · · · · · · ·					<u> </u>
			·					

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #:上	811	A8
SDG #:_(	06-1	846

#### **VALIDATION FINDINGS WORKSHEET** Initial Calibration Calculation Verification

	Page:_			
	Reviewer:_	<u></u>	_	_
2nd	Reviewer:_	9		

METHOD: GC	<b>√</b>	HPLC	
	/		

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C

average CF = sum of the CF/number of standards %RSD = 100 * (S/X)

A = Area of compound, C = Concentration of compound, S = Standard deviation of the CF X = Mean of the CFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF ( 50std)	CF (SOstd) /	Average CF (initial)	Average CF (Initial)	%RSD	%RSD
1	CAZ	DT.	Ø€0	10116.64	1011864	12663.6	1=663.6	(0.407	10.407
		12/20/05					•		
					7.5				
2					:				
3									
		,							
4							·		
	,								

Comments:	Refer to Initial C	Calibration fi	ndings works	heet for list o	of qualification	is and associa	ated samples wh	en reported	results do no	t agree within	<u>10.0% of the</u>	e recalculated
results.	-								•			
					<u> </u>				•			
				<del> </del>	<del></del>	<del></del>						

LDC #: SDG #	118	110	0
SDG#	06-	18	96

#### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification**

Page:_	of
Reviewer:	9
2nd Reviewer:	

	٠.	/	•		•
METHOD:	: GC_	V	HPLC	<u>}</u>	

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF
CF = continuing calibration CF
A = Area of compound
C = Concentration of compound

		•			Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	Average CF(ical)/ CCV Conc.	CF/Conc. CCV	CF/Conc. CCV	%D	%D
1	14524.403	3/28/06	DRU	1000	989	989		
L	. !							
<u></u>								
2								
		٠,						
3								
		. 1						
				·				
4							-	
						;		

Comments:	Refer to Continuing	Calibration find	lings worksheet fo	r list of qualifications	and associated sar	nples when reported	results do not agree	within 10.0% of the
recalculated	results.							

LDC #: SDG #	1481	J-AB
SDG#	06-	896

#### **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification**

Page:_	
Reviewer:	9
2nd reviewer:	~

METHOD: √ GC __ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
1-octacosane	NA	50	52.300	104	104	0
	· ·					

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
·						

Sample ID:_

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
		-		Reported	Recalculated	
•				·		



LDC #:	401	A8
LDC #: SDG #:	06-	896

#### **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

$\sim$
Page:of
Reviewer:
2nd Reviewer:

	- /	
METHOD:	. ✓ GC	HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where SSC = Spiked sample concentration SA = Spike added

SC = Sample concentration

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: 145

		Sp	lke	Sample	Spike \$	Sample	LC	s	LCS	D	LCS/L	.CSD
Comp	oound	, W	ded.	Conc.	Spike S Concer ( UUS	tration	Percent F	Recovery	Percent Recovery		RPD	
		LCS	LCSD		LCS	LCSD	Reported	Recalc,	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)											
Diesel	(8015)	1			108	1.08	(08	108	108	(0-8	0	
Benzene	(8021B)						·					
Methane	(RSK-175)											
2,4-D	(8151)							·				
Dinoseb	(8151)											
Naphthalene	(8310)				<u>-</u>			-		,		
Anthracene	(8310)											
НМХ	(8330)											
2,4,6-Trinitrot	oluene (8330)	·										
					·				·			
								-				
	.!	į.		!!!								

Comments: Refer t	<u>to Laboratory C</u>	Control Sample	Laboratory Cor	ntrol Samp	le Duplicate	<u>findings workshee</u>	et for list of qualific	cations and assoc	ated samples who	en reported
results do not agree	within 10.0%	of the recalcula	ated results.							
	· · · · · ·							<del></del>		

LDC #: 148	IH	8
LDC #: 148 SDG #:06-	184	16

#### **VALIDATION FINDINGS WORKSHEET Sample Calculation Verification**

Page: _	(of
Reviewer:	<u> </u>
2nd Reviewer:	

	/		
METHOD:	√ GC	H	PLC

Υ	'n	N/A
$\mathbb{Z}$	N	N/A

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10% of the reported results?

Concentration= (A)(Fv)(Df)		Example:		•
(RF)(Vs or Ws)(%S/100)		Sample ID. No	Compound Name	
A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor		Sample ID. 70 ~	Compound Name	
RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid	•	Concentration =		 

# .	Sample ID	Compound	Reported Concentrations ( )	Recalculated Results Concentrations (	Qualifications

MPCALew.wpd

Comments:

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 23, 2006

**LDC** Report Date:

April 11, 2006

Matrix:

Water

Parameters:

Total Petroleum Hydrocarbons as Diesel

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1896

Sample Identification

16_MW8-123

#### Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8015B for Total Petroleum Hydrocarbons (TPH) as Diesel.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

#### a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than or equal to 20.0%.

#### b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No total petroleum hydrocarbons as diesel contaminants were found in the method blanks.

No field blanks were identified in this SDG.

#### IV. Accuracy and Precision Data

#### a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

#### b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
All samples in SDG 06-1896	TPH as diesel	No MS/MSD associated with these samples.	MS/MSD required.	None	P

#### c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### V. Target Compound Identification

All target compound identifications were within validation criteria.

#### VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

#### VII. System Performance

The system performance was acceptable.

#### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### IX. Field Duplicates

No field duplicates were identified in this SDG.

#### MCAS El Toro, CTO 084 Total Petroleum Hydrocarbons as Diesel - Data Qualification Summary - SDG 06-1896

SDG	Sample	Compound	Flag	A or P	Reason
06-1896	16_MW8-123	TPH as diesel	None	Р	Matrix spike/Matrix spike duplicates

#### MCAS El Toro, CTO 084

Total Petroleum Hydrocarbons as Diesel - Laboratory Blank Data Qualification Summary - SDG 06-1896

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084 Total Petroleum Hydrocarbons as Diesel - Field Blank Data Qualification Summary -SDG 06-1896

No Sample Data Qualified in this SDG

SDG #:_	06-1896				Le		<del>/IV</del> -( <i>V</i>	OKKSHEEI	Pa	ate: <u>4////o</u> ge:/of_/_ ver:		
.aborato	ory: Applied Physics &	Cher	<u>nistry L</u>	<u>abora</u>	tory				Revie	ver: <u>'Q'</u>		
METHO	D: GC TPH as Diesel (	(EPA	SW84	6 Met	hod 8015	5B)			2nd Review	ver:		
The sam /alidatio	nples listed below were n findings worksheets.	revie	ewed fo	or eacl	n of the fo	ollowing	y validation	areas. Validation f	indings are noted	in attached		
	Validation	Area						Commen	ts			
1. 1	Fechnical holding times				_ <b>A</b>	<u> </u>	3/	23/06				
lla. li	nitial calibration				4							
IIb. C	Calibration verification				4							
III. E	3lanks				*							
IVa. S	Surrogate recovery				$\blacksquare$							
IVb. N	Matrix spike/Matrix spike du	olicate	<u>s</u>		N	Nov	e P					
IVc. L	_aboratory control samples	_			A	120	50		·			
V. 7	Target compound identificati	on			A	Not rev	lewed for Lev	el III validation.				
VI. C	Compound Quantitation and	CRQ	Ls		4	Not reviewed for Level III validation.						
VII. S	System Performance		4	Not reviewed for Level III validation.								
VIII. C	Overall assessment of data		<u> </u>									
IX. F	Field duplicates				N							
X. F	ield blanks			l	N							
	A = Acceptable N = Not provided/applicable SW = See worksheet		= Rinsate FE	) 3 = Fiel	compound d blank		TB = Trip bla	= Duplicate ank B = Equipment blank				
/alidated S	Samples: ** Indicates samp					<del></del>	<del></del>		<del>-  </del>	<del></del>		
	_ <del>MW3_123</del>	11	0641	45	MBO	2	1	31				
2 16	_MW8-123**	12	<u> </u>			2	2	32	<del>-  </del>			
3 16	MW13-123	13			<u>:</u>	2	3	33				
4		14	<u> </u>			2	4	34	_			
5		15	<u> </u>		<del></del>	2	5	35	_			
6	<u> </u>	16				2	5	36	<del> </del>			
7		17	<b> </b> -			2	7	37	<del></del>			
8		18		•	<del></del>	2	8	38		·		
9		19	<b> </b>			2	9	39				
10		20	<u></u>			3	0	40		·		



#### **VALIDATION FINDINGS CHECKLIST**

Page:__/of_2 Reviewer:______ 2nd Reviewer:______

Method: ✓ GC HPLC	<del>7</del>		,	
Validation Area	Yes	No	NA	Findings/Comments
ASSESSORIE (FOR HER PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONTRACTOR OF THE PROPERTY AND A SECOND CONT				
All technical holding times were met.		<u> </u>		:. '
Cooler temperature criteria was met.				
In land to the Line Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of th				
Did the laboratory perform a 5 point calibration prior to sample analysis?	1	_	-	
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) < 20%?	Ľ	<u> </u>		
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?		/		
Did the initial calibration meet the curve fit acceptance criteria?	<u></u>		<u></u>	
Were the RT windows properly established?		20000		
IV. Companio Claration				
What type of continuing calibration calculation was performed?%D or%R	/			
Was a continuing calibration analyzed daily?	1	. ·		
Were all percent differences (%D) ≤ 15%.0 or percent recoveries 85-115%?	/			
Were all the retention times within the acceptance windows?			NE PENSON	
V. Blaus				
Was a method blank associated with every sample in this SDG?	/	<u> </u>	<u> </u>	
Was a method blank analyzed for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
Vissoposeiessiks 177 viss 1889				
Were all surrogate %R within the QC limits?	_		<u> </u>	
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?		,	2	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?	A STREET	22 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/	
VII):Matix-spike/Matinespike:duplicales (4, 2, 2, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?	/_			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
SUITS Laboratory controls ampless 19.				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per extraction batch?	/	١.	1	

LDC#: 14811AT SDG#:06-1896

#### **VALIDATION FINDINGS CHECKLIST**

Page: __of _2 Reviewer: ______ 2nd Reviewer: _______

Validation Area	Yes	No	ŇA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X-Regional/Quality: ssaraisceratio deality control				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?		2000 MIN TO 14 D		
X-17-lige); sompound deciding thous:				
Were the retention times of reported detects within the RT windows?	/			
XI: Compound open plantation of Rolls at the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII s Sýstem periovnánce				
System performance was found to be acceptable.				
XIII gwegija sessmentorgala). Laki ka ka ka ka ka ka ka ka ka ka ka ka ka				
Overall assessment of data was found to be acceptable.				
XIV Field displicates in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st				
Were field duplicate pairs Identified in this SDG?		/	Ì	
Were target compounds idetected in the field duplicates?				
We Felgiolaries				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				

#### **VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification**

	Page:_	/of /
	Reviewer:	14
2nd	d Reviewer:_	

METHOD: GC V HPLC		- 1	,	
	METHOD: GC	V	HPLC	

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 * (S/X)

A = Area of compound, C ≈ Concentration of compound, S ≈ Standard deviation of the CF X ≈ Mean of the CFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#_	Standard ID	Calibration Date	Compound	CF ( S std)	CF (50 std)	Average CF (initial)	Average CF (initial)	%RSD	%RSD
1	ICAZ	12/19/05	\$ FRO	29160.54	29164.9	25919.3	25919.3	7.892	7.89=
2									
	,								
3									
4				!					

Comments:	Referte	<u>o Initial</u>	<u>Calibratio</u>	<u>n finding</u>	<u>s worksh</u>	<u>eet for list c</u>	of qualifications a	nd associated	i samples wher	n reported result	ts do not agree	within 10.0%	of the recalculated
results.							• ;		: -				
· · · · · · · · · · · · · · · · · · ·									`,				
							<del></del>		<del></del>	·			<del></del>

LDC #:	481	TO
SDG #:	06-1	896

#### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification**

Page	of
Reviewe	r: <u> </u>
2nd Reviewer	r:

METHOD: GC_	<b>√</b> .	HPLC	 

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = Initial calibration average CF
CF = continuing calibration CF
A = Area of compound
C = Concentration of compound

#	Standard ID	Calibration Date	Compound	Average CF(Ical)/ CCV Conc.	Reported  CF/Conc. CCV	Recalculated  CF/Conc.  CCV	Reported %D	Recalculated %D
1	4604·402	3/27/06	470	• )	0.993	0.993		1
2								
3								
4								

Comments:	Refer to	Continuing	Calibratio	n findings	worksheet i	for list of	qualifica	tions and	associated	samples wh	en reported	l results do r	not agree withir	10.0% of the
recalculated	results.										•			

LDC#:_	811-1
SDG #: 06	6-1896

#### **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification**

_	/
Page:	_/of_/_
Reviewer:_	9
2nd reviewer:	8

METHOD: ___ GC __ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 2

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
#B	NA	100	112	112	112	0
+						
					· .	

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
				•		
				·		
				·		

LDC #: 48116T	
SDG #: 06-189	Ь

## VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page:_	
Reviewer:_	<u> </u>
2nd Revi	ewer:Q

	•		ŀ	
METHOD:		· ./	GC	HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below

using the following calculation: %Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration SA = Spike added SC = Sample concentration

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

MS = Matrix spike

MSD = Matrix spike duplicate

MS/MSD samples: 4/5

		Spi	ke	Sample	Spike 8	Sample	Matrix	spike	Matrix Spike	Duplicate	Ms/N	/ISD
Comp	ound	Add	led (e_)	Conc.	Concer ( W.	tration	Percent F	Recovery	Percent Recovery		RPD	
		MS /	MSD		MS	MSD	Reported	Recalc.	Reported	Recaic.	Reported	Recalc.
Gasoline	(8015)		1	0.04	[.1].	1.14	107	10 7	110	110	3	3
Diesel	(8015)											
Benzene	(8021B)			·		,				·		
Methane	(RSK-175)											
2,4-D	(8151)											
Dinoseb	(8151)			·								
Naphthalene	(8310)			·								
Anthracene	(8310) ·		,									
НМХ	(8330)			·								
2,4,6-Trinitrot	oluene (8330)											
												-
			·			·						
		1							<u> </u>			

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.



LDC #: 14811-A7 SDG #:06-1896	•
SDG #:06-1896	

# VALIDATION FINDINGS WORKSHEET <u>Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification</u>

Page: <u></u> 0f	
Reviewer: 9	
2nd Reviewer:	2

	- 1		
METHOD:	ι/	GC	HPLC
MIE I NOD.	v	GC	ULLO

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration SA = Spike added SC = Sample concentration

RPD =(((SSCLCS - SSCLCSD) * 2) / (SSCLCS + SSCLCSD))*100

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: 7460 ( . 201/10)

		Spike Sam Added Con		Sample Spike Sample Conc./ Concentration		LCS		LCSD		LCS/LCSD		
Compound		(W	S/4	Conc./	Concer (W=	itration	Percent F	Recovery	Percent Re	ecovery	RP	D
		LCS /	LCSD		LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (801	15)	,	1	NB	1.09	1.05	109	109	105	105	4	4
Diesel (801	5)											
Benzene (802	:1B)				·			·				
Methane (Rs	SK-175)										:	
2,4-D (815	1)											
Dinoseb (815	51)				·							
Naphthalene (831	10)											
Anthracene (831	10)											
HMX (833	30)				·			·				
2,4,6-Trinitrotoluen	ne (8330)											
					,				. `			

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sar	nple Duplicate	findings worksheet for I	ist of qualifications and	associated sample	es when re	eported
results do not agree within 10,0% of the recalculated results	•	•				• •	

LDC#:148	
SDG #:06	-1896

## VALIDATION FINDINGS WORKSHEET <u>Sample Calculation Verification</u>

	Page: _	
F	Reviewer:	<u> a</u>
2nd F	Reviewer:	- 9

	- 1		
METHOD:	✓_	GC	 HPLO

Ws= Initial weight of the sample

%S= Percent Solid

Y	N.	N/A
$\nabla\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	N	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10% of the reported results?

Concentration= (A)(Fv)(Df)		EX
(RF)(Vs or Ws)(%S/100)	•	
	•	San
A= Area or height of the compound to be measured		
Fv= Final Volume of extract	i	
Df= Dilution Factor		
RF= Average response factor of the compound	•	Cor
In the initial calibration		
Vs= Initial volume of the sample		

xample:

ample ID. 2 Compound Name FRO

Concentration = (1624187) (1) (25919.3) (1000)

= 0.063 ms/2

#	Sample ID	Compound	Reported Concentrations ( )	Recalculated Results Concentrations (	Qualifications
			·		
				· ·	

			4 · · · · · · · · · · · · · · · · · · ·	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
	•				
Comments:		· · · · · · · · · · · · · · · · · · ·			
			<del></del>		
		• '			
· ·				 	



LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

CDM Federal

April 13, 2006

9444 Farnham Street, Suite 210

San Diego, CA 92123 ATTN: Mr. Michael Higman

SUBJECT: MCAS El Toro CTO 084, Data Validation

Dear Mr. Higman,

Enclosed is the final validation report and Excel qualification sheet for the fractions listed below. This SDG were received on April 10th, 2006.

#### LDC project# 14820:

SDG#	<u>Fraction</u>
06-1875	Volatiles (Method CLP SOW OLM04.1) Metals (Method CLP SOW ILM04.2)
	Wet Chemistry (Method EPA 300.0, 310.1 and 160.1)

The following deliverables are submitted under this report:

•	Attachment I	Sample ID Cross Reference and Data Review Level
•	Attachment II	Overall Data Qualification Summary
•	Attachment III	CDM Database Qualification Summary
•	Enclosure I	EPA Level III ADR Outliers (including manual review outliers)
• .	Enclosure II	EPA Level IV DVR (manual review)

The data validation was performed in accordance to the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999 and for Inorganic Data Review, October 2004. Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The following items were evaluated during the review:

- Holding Times
- Sample Preservation
- Cooler Temperatures
- Initial Calibration (Manual Review)
- Continuing Calibration (Manual Review)
- Blanks
- Surrogates
- Internal Standards (Manual Review)
- Matrix Spike/Matrix Spike Duplicates
- Laboratory Control Samples



- Detection and Quantitation LimitsField QC Samples

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto
Operations Manager/Senior Chemist

## Attachment I

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
21-Mar-2006	02_DGMW59-123	06-1875-3	N	3010A	CLP-Metal	IV
21-Mar-2006	02_DGMW59-123	06-1875-3	N	5030B	CLP-VOC	IV
21-Mar-2006	02_DGMW59-123	06-1875-3	N	7470A	CLP-Metal	IV.
21-Mar-2006	02_DGMW59-123DUP	06-1875-3MD	DUP	3010A	CLP-Metal	111
21-Mar-2006	02_DGMW59-123DUP	06-1875-3MD	DUP	7470A	CLP-Metal	111
21-Mar-2006	02_DGMW59-123MS	06-1875-3MS	MS	3010A	CLP-Metal	. 100
21-Mar-2006	02_DGMW59-123MS	06-1875-3MS	MS	5030B	CLP-VOC	111
21-Mar-2006	02_DGMW59-123MS	06-1875-3MS	MS	7470A	CLP-Metal	m.
21-Mar-2006	02_DGMW59-123MSD	06-1875-3MSD	MSD	5030B	CLP-VOC	111
21-Mar-2006	02_DGMW59-123	06-1875-3RE	N	3010A	CLP-Metai	IV
21-Mar-2006	02_NEW11-123	06-1875-5	N	3010A	CLP-Metal	m
21-Mar-2006	02_NEW11-123	06-1875-5	N	5030B	CLP-VOC	III.
21-Mar-2006	02_NEW11-123	06-1875-5	N	7470A	CLP-Metal	
21-Mar-2006	02_NEW11-123	06-1875-5RE	. <b>N</b>	3010A	CLP-Metal	H
21-Mar-2006	BT4-923	06-1875-7	ТВ	5030B	CLP-VOC	tit
22-Mar-2006	02NEW15-123	06-1875-1	N	3010A	CLP-Metal	ш.
22-Mar-2006	02NEW15-123	06-1875-1	N	5030B	CLP-VOC	IH .
22-Mar-2006	02NEW15-123	06-1875-1	N	7470A	CLP-Metal	111
22-Mar-2006	02NEW15-123	06-1875-1RE	<b>N</b>	3010A	CLP-Metal	111
22-Mar-2006	02_NEW2-123	06-1875-4	N	3010A	CLP-Metal	IV
22-Mar-2006	02_NEW2-123	06-1875-4	N	5030B	CLP-VOC	IV
22-Mar-2006	02_NEW2-123	06-1875-4	<b>N</b> .	7470A	CLP-Metal	IV
22-Mar-2006	02_NEW2-123MS	06-1875-4MS	MS	5030B	CLP-VOC	III
22-Mar-2006	02_NEW2-123MSD	06-1875-4MSD	MSD	5030B	CLP-VOC	m,
22-Mar-2006	02_NEW2-123	06-1875-4RE	N	3010A	CLP-Metal	IV
22-Mar-2006	BT5-923	06-1875-8	ТВ	5030B	CLP-VOC	111

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
22-Mar-2006	02NEW16-123	06-1875-2	N	3010A	CLP-Metal	Ш
22-Mar-2006	02NEW16-123	06-1875-2	. <b>N</b>	5030B	CLP-VOC	III
! 22-Mar-2006	02NEW16-123	06-1875-2	N	7470A	CLP-Metal	III
22-Mar-2006	02NEW16-123	06-1875-2	N N	GEN PREP	160.1	10
22-Mar-2006	02NEW16-123	06-1875-2	· N	GEN PREP	300.0	III
22-Mar-2006	02NEW16-123	06-1875-2	N	GEN PREP	310.1	m
22-Mar-2006	02NEW16-123	06-1875-2RE	N	3010A	CLP-Metal	10
22-Mar-2006	17_DGMW82-123	06-1875-6	N	3010A	CLP-Metal	111
22-Mar-2006	17_DGMW82-123	06-1875-6	N	5030B	CLP-VOC	İII
22-Mar-2006	17_DGMW82-123	06-1875-6	, N	7470A	CLP-Metal	. 111
22-Mar-2006	17_DGMW82-123	06-1875-6	N	GEN PREP	160.1	. 111
22-Mar-2006	17_DGMW82-123	06-1875-6	N	GEN PREP	300.0	III
22-Mar-2006	17_DGMW82-123	06-1875-6	N	GEN PREP	310.1	Ht
22-Mar-2006	17_DGMW82-123	06-1875-6RE	N	3010A	CLP-Metal	111

## **Attachment II**

## **Overall Data Qualification Summary**

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overali Qualifler	Units	Reason Code
SDG: 61875						· ,				
CLP-Metal	02_DGMW59-123	AQ	N	••••••••••••		•••••				
				ARSENIC	10	5.6B		Ú	ug/L	
	*			BARIUM	200	134B		J	ug/L	
				CHROMIUM	10	3.5B		J	ug/L	
				COPPER	25	. 11.8B		J	ug/L	
				IRON	100	24.3B		. <b>U</b>	ug/L	
				MERCURY	0.2	0.059B		U	ug/L	
				NICKEL	40	5.4B		J	ug/L	
				POTASSIUM	5000	1670B	•	· j	ug/L	
				VANADIUM	50	9.0B		· J	ug/L	
	•			ZINC	20	12.1B		J	ug/L	
CLP-Metal	02_NEW11-123	AQ	N							
				ALUMINUM	200	25.0B		J	ug/L	
				ARSENIC .	10	6.6B		. <b>U</b>	ug/L	
				BARIUM	200	. 107B		J	ug/L	
				CHROMIUM	10	1.8B		J	ug/L	
				COPPER	25	14.9B		J	ug/L	•
		• .		IRON	100	32.2B		J	ug/L	
				MANGANESE	15	9.2B		J	ug/L	
•				MERCURY	0.2	0.068B		U	ug/L	
	•	•		POTASSIUM	5000	3410B		J	ug/L	
				THALLIUM	10	3.8B		U	ug/L	
•				VANADIUM	50	9.2B		J	ug/L	
				ZINC	20	11.6B		J	ug/L	*

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifler	Units	Reason Code
SDG: 61875										
CLP-Metal	02_NEW2-123	AQ.	N						·······	
* .				ALUMINUM	200	26.6B		J	ug/L	
				ARSENIC	10	6.0B		U	ug/L	
				BARIUM	200	94.4B		J	ug/L	
				CADMIUM	. 5	0.53B		U	ug/L	
				CHROMIUM	10	4.0B		J	ug/L	
				COPPER	. 25	14.7B	,	J	ug/L	
				IRON	100	41.9B		J	ug/L	
<del>-</del>				LEAD	3	2.9B		U	ug/L	
				MANGANESE	15	1.4B		U	ug/L	
				MERCURY	0.2	0.088B		U	ug/L	
				NICKEL	40	· 2.4B		j	ug/L	
				POTASSIUM	5000	1760B		j	ug/L	
				THALLIUM	10	3.7B		U	ug/L	
	•			VANADIUM	50	14.4B		J	ug/L	
				ZINC	20	11.0B		J	ug/L	•
CLP-Metal	02NEW15-123	AQ	N							
				ALUMINUM	200	28.0B		J	ug/L	
				ARSENIC	10	6.7B		U	ug/L	
				BARIUM	200	59.3B		J	ug/L	
•	•			CHROMIUM	10	2.7B		J	ug/L	
				COPPER	25	15.1B		J	ug/L	
				IRON	100	38.7B		J	ug/L	
			•	LEAD	3	1.6B		U	ug/L	
				MERCURY	0.2	0.065B		U	ug/L	
				NICKEL	40	24.9B		J	ug/L	
				POTASSIUM	5000	2270B		J	ug/L	
				THALLIUM	10	2.3B		U	ug/L	
				VANADIUM	50	11.4B		j	ug/L	
				ZINC	20	10.7B		J	ug/L	

Analytical Method	Field Sample ID	Matrix	Sample Type		Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61875							.·				
CLP-Metal	02NEW16-123	AQ	N							••••	
				ALUMINUM		200	20.6B		J	ug/L	
				ARSENIC		10	5.1B		U	ug/L	
				BARIUM		200	142B		J	ug/L	
				CHROMIUM		10	1.9B		J	ug/L	
•				COPPER	•	25 .	12.5B		J .	ug/L	
	•			IRON		100	27.6B		J	ug/L	
				MERCURY		0.2	0.061B	•	U	ug/L	
	** *** *** *** *** *** *** *** *** ***	•		POTASSIUM		5000	1070B	-	· J	ug/L.	**
				THALLIUM		10	2.1B		U	ug/L	
				VANADIUM		50	16.0B		J .	ug/L	
•				ZINC		20	7.1B		J	ug/L	• .
CLP-Metal	17_DGMW82-123	AQ	N			•••••					
				ALUMINUM		200	20.2B		.J	ug/L	
	•			ARSENIC		10	3.6B		U -	ug/L	
•	•			BARIUM		200	41.5B		J	ug/L	
				CHROMIUM		10	2.7B		J	ug/L	
				COBALT		50	2.5B		J	ug/L	
	•			COPPER		- 25	4.8B		J	ug/L	
				IRON		100	56.3B		J	ug/L	
-	• *			MERCURY	•	0.2	0.056B	•	U	ug/L	
				POTASSIUM		5000	4340B		J	ug/L	
				THALLIUM	•	10	4.1B		U	ug/L	
				VANADIUM		50	6.3B		J	ug/L	
•				ZINC	•	20	10.3B		J	ug/L	

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61875								··		
CLP-VOC	02_DGMW59-123	AQ	N			· · · · · · · · · · · · · · · · · · ·	•••••			
				1,2-DICHLOROPROPANE	1	1U		IJ	ug/L	
				1,3-DICHLOROBENZENE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
•				2-HEXANONE	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
		•		DICHLORODIFLUOROMETHANE	1	. 1U		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	
CLP-VOC	02_NEW11-123	AQ	N							
	_			1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
		•		1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
•				2-BUTANONE (MEK)	10	10U	•	UJ	ug/L	
				CHLOROETHANE	1	1U .	·	UJ	ug/L	
	•	•		DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	
CLP-VOC	02_NEW2-123	AQ	N					•••••		
	_			1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
				1,2-DICHLOROPROPANE	1	10		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U .		UJ	ug/L	
•				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	
CLP-VOC	02NEW15-123	AQ	N							
				1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
				1,2-DICHLOROBENZENE	1	0.7J		J	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
,				1,4-DICHLOROBENZENE	. 1	0.7J		J	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROBENZENE	1	0.5J		J	ug/L	
				CHLOROETHANE	1	1U .	*	UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		IJ	ug/L	
	•			TETRACHLOROETHENE	1	1U :	-	ບຸ	ug/L	

N = Normal Sample TB = Trip Blank FD = Field Duplicate FB = Field Blank

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61875	- '									
CLP-VOC	02NEW16-123	AQ	N						•••••	
				1,1-DICHLOROETHANE	1	1U		IJ	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	
CLP-VOC	17_DGMW82-123	AQ	. N	<u> </u>						
	_			1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
•			•	CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	
CLP-VOC	BT4-923	AQ	ТВ							
•	•	·		1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
	•			2-BUTANONE (MEK)	10	10U		. UJ	ug/L	
				CHLOROETHANE	1 -	1U		· UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
•	-		-	TETRACHLOROETHENE	1	1U		UJ	ug/L	-
CLP-VOC	BT5-923	AQ	ТВ						· · · · · · · · · · · · · · · · · · ·	
	•			1,1-DICHLOROETHANE	1 -	1U		UJ	ug/L	•
				1,2-DICHLOROPROPANE	1	- 1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
	. •		•	DICHLORODIFLUOROMETHANE	1	1U	. •	UJ	ug/L	•
				TETRACHLOROETHENE	1	1U		UJ	ug/L	

## Attachment III

CDM Database Qualification Summary

#### Project No # : 14820

## CDM Federal Programs Corporation Reason for Qualified Results SDG Nos.: 61875

Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Detected Qualifier	Non Detected Qualifier	Analyte Name	Reason
61875	02_DGMW59-123	CLP-Metal	7440382	υ		ARSENIC	Present in method blank
61875	02_DGMW59-123	CLP-Metal	7439896	U		IRON	Present in method blank
61875	02_DGMW59-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
61875	02_DGMW59-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61875	02_DGMW59-123	CLP-VOC	541731		J	1,3-DICHLOROBENZENE	Continuing calibration percent difference
61875	02_DGMW59-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61875	02_DGMW59-123	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
61875	02_DGMW59-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61875	02_DGMW59-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61875	02_DGMW59-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61875	02_NEW11-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61875	02_NEW11-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
61875	02_NEW11-123	CLP-Metal	7440280	U		THALLIUM	Present in method blank
61875	02_NEW11-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61875	02_NEW11-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61875	02_NEW11-123	CLP-VOC	78933		J.	2-BUTANONE (MEK)	Continuing calibration percent difference
61875	02_NEW11-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61875	02_NEW11-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61875	02_NEW11-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61875	02_NEW2-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61875	02_NEW2-123	CLP-Metal	7440439	U	· · · · · · · · · · · · · · · · · · ·	CADMIUM	Present in method blank
61875	02_NEW2-123	CLP-Metal	7439921	U		LEAD	Present in method blank
61875	02_NEW2-123	CLP-Metal	7439965	U		MANGANESE	Present in method blank
61875	02_NEW2-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
61875	02_NEW2-123	CLP-Metal	7440280	U		THALLIUM	Present in method blank
61875	02_NEW2-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61875	02_NEW2-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61875	02_NEW2-123	CLP-VOC	78933		J ·	2-BUTANONE (MEK)	Continuing calibration percent difference
61875	02_NEW2-123	CLP-VOC	75003	-	J	CHLOROETHANE	Continuing calibration percent difference
61875	02_NEW2-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61875	02_NEW2-123	CLP-VOC	127184		J	TETRACHLOROETHENE.	Continuing calibration percent difference
61875	02NEW15-123	CLP-Metal	7440382	U.		ARSENIC	Present in method blank

#### Project No # : 14820

## CDM Federal Programs Corporation Reason for Qualified Results SDG Nos.: 61875

Non	
Detecte	d

Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Detected Qualifier	Detected Qualifier	Analyte Name	Reason
61875	02NEW15-123	CLP-Metal	7439921	U		LEAD	Present in method blank
61875	02NEW15-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
61875	02NEW15-123	CLP-Metal	7440280	U		THALLIUM	Present in method blank
61875	02NEW15-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61875	02NEW15-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61875	02NEW15-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61875	02NEW15-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61875	02NEW15-123	CLP-VOC	75718		J ·	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61875	02NEW15-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61875	02NEW16-123	CLP-Metal	7440382	U		ARSENIC	Present in method blank
61875	02NEW16-123	CLP-Metal	7439976	U		MERCURY	Present in method blank
61875	02NEW16-123	CLP-Metal	7440280	U		THALLIUM	Present in method blank
61875	02NEW16-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61875	02NEW16-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61875	02NEW16-123	CLP-VOC	78933	7	J	2-BUTANONE (MEK)	Continuing calibration percent difference
61875	02NEW16-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61875	02NEW16-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61875	02NEW16-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61875	17_DGMW82-123	CLP-Metal	7440382	υ		ARSENIC	Present in method blank
61875	17_DGMW82-123	CLP-Metal	7439976	U	· · · · · · · · · · · · · · · · · · ·	MERCURY	Present in method blank
61875	17_DGMW82-123	CLP-Metal	7440280	U		THALLIUM	Present in method blank
61875	17_DGMW82-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61875	17_DGMW82-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61875	17_DGMW82-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61875	17_DGMW82-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61875	17_DGMW82-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61875	17_DGMW82-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61875	BT4-923	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61875	BT4-923	CLP-VOC	7887,5		J.	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61875	BT4-923	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61875	BT4-923	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61875	BT4-923	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference

### CDM Federal Programs Corporation

# Reason for Qualified Results SDG Nos.: 61875

Project No # : 14820

Sample Del Group (SDG)	Sample ID	Test Method	CAS No.	Non etected Qualifier	Analyte Name	Reason
61875	BT4-923	CLP-VOC	127184	J	TETRACHLOROETHENE	Continuing calibration percent difference
61875	BT5-923	CLP-VOC	75343	J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61875	BT5-923	CLP-VOC	78875	J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61875	BT5-923	CLP-VOC	78933	J	2-BUTANONE (MEK)	Continuing calibration percent difference
61875	BT5-923	CLP-VOC	75003	J	CHLOROETHANE	Continuing calibration percent difference
61875	BT5-923	CLP-VOC	75718	J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61875	BT5-923	CLP-VOC	127184	 J	TETRACHLOROETHENE	Continuing calibration percent difference

## **Enclosure I**

# **EPA Level III ADR Outliers** (including Manual Review Outliers)

# Quality Control Outlier Reports

SDG 06-1875

SDG a	t: 14820A1 #: 06-1875 atory: <u>Applied Physics &amp;</u>			Le	PLETENESS \ evel4##V─A	WORKSHEET PR	Date: 4/11/06 Page:/of/ Reviewer:/ 2nd Reviewer:/			
The s	IOD: GC/MS Volatiles (E amples listed below were tion findings worksheets.	revie			ollowing validatio	on areas. Validation fin	dings are noted in attached			
	Validation	Area				Comments				
1.	Technical holding times			4	Sampling dates:	8/21-22/00	5			
11.	GC/MS Instrument performance check			_ ♠						
111.	Initial calibration		-	<b>A</b>						
IV.	Continuing calibration			W						
v.	Blanks			A						
VI.	Surrogate spikes			A		·				
VII.	Matrix spike/Matrix spike du	olicate	S	-4		<u> </u>				
VIII.	Laboratory control samples			_A	109					
IX.	Regional Quality Assurance	and Q	uality Control	N						
_X.	Internal standards			-₽						
XI.	Target compound identificat	ion		_ \$	Not reviewed for L	evel III validation.				
XII.	Compound quantitation/CRC	Ls		-⋪	Not reviewed for L	evel III validation.	·			
XIII.	Tentitatively identified comp	ounds	(TICs)	4	Not reviewed for Level III validation.					
XIV.	System performance			A	Not reviewed for Level III validation.					
XV.	Overall assessment of data			$\Phi$						
XVI.	Field duplicates	-		N						
XVII.	Field blanks			N						
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples: ** Indicates sample		Rinsate FB = Fid	o compound eld blank V validation	TB = Trip	D = Duplicate blank EB = Equipment blank				
17	02NEW15-123	11 /	02_NEW2-12	3M6	21 / 06 6	HTIMBO 31				
2 /	02NEW16-123	12/	02_NEW2-12		ا بد ا	H81MB0/32				
3	02_DGMW59-123**	13			23	33				
4 /	02_NEW2-123**	14			24	34				
	02_NEW11-123	15		<del> </del>	25	35				
6 /	17_DGMW82-123	16			26	36				
7 /	BT4-923	17			27	37				
8 /	BT5-923	18	·		28	38				

29

30

39

40

02_DGMW59-123MS

02_DGMW59-123MSD

19

20

#### TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA SW 846 Method 8260B)

			Y	
A. Chloromethane*	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride**	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform*	RR. Dibromomethane	LLL. Hexachiorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene**	BB. 1,1,2,2-Tetrachloroethane*	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane*	CC. Toluene**	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene*	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	ш
K. Chloroform**	EE. Ethylbenzene**	YY. n-Propylbenzene	SSS. o-Xylene	мммм.
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chioroethylvinyl ether	CCC, tert-Butylbenzene	WWW. Ethanol	aaaa.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-Isopropyl ether	RRRR.
Q. 1,2-Dichloropropane**	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	ssss.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butył alcohol	ттт
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methył ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB, tert-Amyl methyl ether	vvv.

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

LDC #: 4820A SDG #: 06-

#### **VALIDATION FINDINGS WORKSHEET Continuing Calibration**

Reviewer 2nd Reviewer:

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

| N N | Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?
| N N | Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?

#	Date	Standard ID	Compound	Finding %D (Limit: <u>&lt;</u> 25.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	3/-9/06	£1471201	11	30.4		1-2.4-8.11-12	YWY A
	7 /		D ·	40.3		06FHTIMBO	
			IF	26.2			
			М	81.9			
			<u> </u>	40.1	-		-
			AA AX	26.0	-		/
			8 **		0.26 (7030)		No we
			<del></del>			<u></u>	
	3/30/06	4451201	Ä	36.3		3.9-10	1/W/A
<u> </u>	'. /	<u> </u>	<u> </u>	29.9		06年 1481 MBO	
<b> </b>			M.	73.5		1	
<u> </u>		·	<u>&amp;</u>	38.1			
<b> </b>			Z AA	33.9			
<b> </b>			A/1	30.			
<b> </b>		·	FFF	25.2	<u> </u>		Δ/
<b> </b>	<u> </u>						
<b> </b>		<del></del>	<del></del>	<u> </u>			
			<u> </u>	ļ			<u> </u>
	<del> </del>			<u> </u>			
		<del></del>	<del></del>	ļ. ———			
	<del> </del>						
<b></b> -						<u>-</u>	
						-	
	L				<u> </u>		<del>-</del>

## Method Blank Outlier Report

Lab Reporting Batch: 61875

Lab ID: APCL

Analysis Method : CLP-Metal

Analysis Date: 03/24/2006

Preparation Type: 7470A

Preparation Date: 03/24/2006

Method Blank Lab Sample ID : 06M1182-MB-01

Preparation Batch: 06M1182H

		Reporting		Lab		
MERCURY	Result	Limit	Units	Qual	Comments	
Method Blank Result:	0.063	0.2	ug/L	В	-	

MERCURY was qualified due to method blank contamination in the following associated samples:

Client Sample fD	Lab Sample (D	Dilution	Result	Lab Qual	Result ** Units :
02_DGMW59-123	06-1875-3	1	0.059	В	ug/L
02_NEW11-123	06-1875-5	. 1	0.068	В	ug/L
02_NEW2-123	06-1875-4	1	0.088	В	ug/L
02NEW15-123	06-1875-1	1	0.065	В	ug/L
02NEW16-123	06-1875-2	· · · · · · · · · · · · · · · · · · ·	0.061	В	ug/L
17_DGMW82-123	06-1875-6	1 -	0.056	В	ug/L

SDG	#:14820A4 #:06-1875 pratory:_Applied Physics		· L	PLETENE: evel III/IV	ss workshi Apr	EET	Page: 4 of A				
The	HOD: Metals (EPA CL samples listed below w ation findings workshe	ere reviewed for		following val	dation areas. Va	lidation find	2nd Reviewer:				
	Validati	on Area		Comments							
1.	Technical holding times		_   A	Sampling dat	es: 03/1, 22	106					
. 11.	Calibration		A	<u> </u>		·					
311.	Blanks	Blanks			· · · · · · · · · · · · · · · · · · ·						
IV.	ICP Interference Check	ICP Interference Check Sample (ICS) Analysis				<u> </u>					
<u>v.</u>	Matrix Spike Analysis	Matrix Spike Analysis			loup						
VI.	Duplicate Sample Analy	Duplicate Sample Analysis			<u> </u>						
VII	Laboratory Control Sam	oles (LCS)	A	Les	<u> </u>						
VIII	. Internal Standard (ICP-N	15)	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- Wilger	Ll					
IX.	Furnace Atomic Absorpt	ion QC	N				· · · · · · · · · · · · · · · · · · ·				
<u>x.</u>	ICP Serial Dilution		A	ļ							
XI.	Sample Result Verification	on	<del> </del>	Not reviewed	for Level III validatio	n.	<u> </u>				
XII.	Overall Assessment of E	)ata	<u> </u>								
XIII	Field Duplicates	·	<u> </u>								
XIV	. Field Blanks		N								
Note:	A = Acceptable N = Not provided/applic SW = See worksheet	able R = FB	= No compound = Rinsate = Field blank		D = Duplicate TB = Trip blank EB = Equipmer						
/alloa	ted Samples: ** Indicates s	ample underwent Le	ver (v validation	——————————————————————————————————————		<del></del>					
1	02NEW15-123	11		21		31					
2	02NEW16-123	12		22		32					
3	02_DGMW59-123**	13		23		33					
4	02_NEW2-123**	14	<del></del>	24		34					
5	02_NEW11-123	15	·	25		35					
6	17_DGMW82-123	16		26		36					
7	02_DGMW59-123MS	17	·	27	<u> </u>	37					
8	02_DGMW59-123DUP	18		28		38					
9	PB	19		29	<u> </u>	39					
10		20		30		40					

LDC #:_	30f4
SDG #:	06-1874

#### VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:_	<u> For I</u>
Reviewer:_	MID
2nd Reviewer:	~

METHOD: Trace metals (EPA CLP SOW ILM04.0) Soil preparation factor applied:

Sample Concentration units, unless otherwise noted: 49/1 Associated Samples:

				vise notea:	<u> </u>		Associated		ampla Identifi	ation				
Analyte	Maximum PB* (mg/Kg)	Maximum PB* (ug/L)	Maximum ICB/CCB* (ug/L)	Action  eal	3	4	BOR		5	-0 6				
Al														
Sb								•					<del> </del>	
As			1,663	8.315	c-6	6.0	6.7	5-1	6-6	3-6		<del></del>		
Ва			2,860	14.3				<del></del>			,			
Ве			0.385	1,15										
Cd			0.745	3.72		0,53								
Ca										·				<u> </u>
Cr	·					- :-		·	:.	<del></del>	<b> </b>		<u> </u>	<u> </u>
Co													ļ ·	-
Cu			. 2011				·						<u> </u>	ļ
Fe			5,387	26.935	24,3					<u> </u>		<u> </u>	<del> </del>	<del>                                     </del>
Pb			1,055	5.77		2.9	1.6	<del></del> -	ļ	<del></del>				<del> </del>
Mg Mn			h436	7.18		1,4		<del></del>					<u> </u>	<del> </del>
Hg		0.063	N75.6		o - ⊢a	0.088	4 26 20	0.061	0,068	0.056				<del> </del>
Ni		0,007		0.715	0,259	0,000	0,065	2061	0,000	0,43 8		<u> </u>	<del> </del>	<del> </del>
ĸ	·			-				· · · · · · · · · · · · · · · · · · ·	<u> </u>					<del> </del>
Se												_ <del></del>	<del>                                     </del>	
Ag			1,263	6.315					·					
Na	,¥*						:	<del></del>					<del> </del>	1
П			2,002	(0,0)		3.7	ン・ラ	2-	3.8	4.1				
>						7		,						
Zn														
В														
Мо														
Sr		<u> </u>	<u> </u>		<u> </u>		oncentration are							

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the Identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

## Reporting Limits Outlier Report (detected results reported below the reporting limit)



Lab Report Batch: 61875

Lab ID: APCL

Client Sample ID	Lab Sample ID	Analysis Method	Matrix	Analyte Name	Lab Qualifier	Result	EDD Reporting Limit	Units
02_DGMW59-123	06-1875-3	CLP-Metal	AQ	ARSENIC	В	5.6	10	ug/L
				BARIUM	В	134	200	ug/L
				CHROMIUM	В	3.5	10	ug/L
				COPPER	В	11.8	25	ug/L
<del></del>	······································			IRON	В	24.3	100	ug/L
	<del>-</del>			MERCURY	В	0.059	0.2	ug/L
				NICKEL	В	5.4	40	ug/L
	06-1875-3RE			POTASSIUM	В	1670	5000	ug/L
	06-1875-3			VANADIUM	В	9.0	50	ug/L
			<del>, -</del>	ZINC	В	12.1	20	ug/L
02_NEW11-123	06-1875-5			ALUMINUM	В	25.0	200	ug/L
				ARSENIC	В	6.6	10	ug/L
	•••••••	·· <del>··</del>		BARIUM	В	107	200	ug/L
		••••••		CHROMIUM	В	1.8	10	ug/L
		· · · · · · · · · · · · · · · · · · ·		COPPER	В	14.9	25	ug/L
				IRON	В	32.2	· 100	ے ug/L
		·		MANGANESE	В	9.2	15	ug/L\
				MERCURY	В	0.068	0.2	ug/L
***************************************	06-1875-5RE	'		POTASSIUM	В	3410	5000	ug/L
***************************************	06-1875-5			THALLIUM	В	3.8	10	ug/L
		1.		VANADIUM	В	9.2	50	ug/L
				ZINC	В	11.6	20	ug/L
02_NEW2-123	06-1875-4			ALUMINUM	В	26.6	200	ug/L
				ARSENIC	В	6.0	10	ug/L
		•		BARIUM	В	94.4	200	ug/L
	***************************************			CADMIUM	В	0.53	5	ug/L
		• • • • • • • • • • • • • • • • • • • •		CHROMIUM	В	4.0	10	ug/L
				COPPER	В	14.7	25	ug/L
1	<del>-</del> - <del></del>			IRON	В	41.9	100	ug/L
				LEAD	В	2.9	3	ug/L
				MANGANESE	В	1.4	15	ug/L
	·			MERCURY	В	0.088	0.2	ug/L
		***	<b></b>	NICKEL	В	2.4	40	ug/L
	06-1875-4RE		·	POTASSIUM	В	1760	5000	ug/L
	06-1875-4	· · · · · · · · · · · · · · · · · · ·		THALLIUM	В	3.7	10	ug/L
				VANADIUM	В	14.4	50	ug/L

Project Number and Name:

6218.084 - EL TORO

**ADR 8.0** 

Report Date: 4/12/2006 18:04

Page 1 of 3

## Reporting Limits Outlier Report (detected results reported below the reporting limit)

Lab Report Batch: 61875

Lab ID: APCL

Client Sample ID	Lab Sample ID	Analysis Method	Matrix	Analyte Name	Lab Qualifier	Result	EDD Reporting Limit	Units
02_NEW2-123	06-1875-4	CLP-Metal	AQ	ZINC	В	11.0	20	ug/L
02NEW15-123	06-1875-1	·		ALUMINUM	В	28.0	200	ug/L
*		•••••••		ARSENIC	В	6.7	10	ug/L
				BARIUM	В	59.3	200	ug/L
	· · · · · · · · · · · · · · · · · · ·	•••••		CHROMIUM	В	2.7	10	ug/L
***				COPPER	В	15.1	25	ug/L
		•		IRON	В	38.7	100	ug/L
				LEAD	В	1.6	3	ug/L
				MERCURY	В	0.065	0.2	ug/L
	•			NICKEL	В	24.9	40	ug/L
	06-1875-1RE		•••••	POTASSIUM	В	2270	5000	ug/L
	06-1875-1			THALLIUM	В	2.3	10	ug/L
				VANADIUM	В	11.4	50	ug/L
	<del></del>			ZINC	В	10.7	20	ug/L
		CLP-VOC		1,2-DICHLOROBENZENE	J	0.7	. 1	ug/L
7				1,4-DICHLOROBENZENE	J	0.7	1	ug/L
)		<del></del>		CHLOROBENZENE	J	0.5	1	ug/L
02NEW16-123	06-1875-2	CLP-Metal		ALUMINUM	В	20.6	200	ug/L
			************	ARSENIC	В	5.1	10	ug/L
	·	·		BARIUM	В	142	200	ug/L
		·		CHROMIUM	В	1.9	10	ug/L
		<del></del>		COPPER	В	12.5	25	ug/L
			••••••	IRON	В	27.6	100	ug/L
	,	·		MERCURY	В	0.061	0.2	ug/L
	06-1875-2RE			POTASSIUM	. · B	1070	5000	ug/L
	06-1875-2	~ <b></b>		THALLIUM	В	2.1	10	ug/L
<del></del>		· .		VANADIUM	В	16.0	50	ug/L
				ZINC	В	7.1	20	ug/L
17_DGMW82-123	06-1875-6	· · · · · · · · · · · · · · · · · · ·		ALUMINUM	В	20.2	200	ug/L
	•••••••••			ARSENIC	В	3.6	10	ug/L
				BARIUM	В	41.5	200	ug/L
1		<del></del>		CHROMIUM	В	2.7	10	ug/L
		·	,	COBALT	В	2.5	50	ug/L
				COPPER	В	4.8	25	ug/L
				IRON	В	56.3	100	ug/L
*				MERCURY	В	0.056	0.2	ug/L
	***************************************						<del></del>	

## Reporting Limits Outlier Report (detected results reported below the reporting limit)

#### Lab Report Batch: 61875

#### Lab ID: APCL

Client Sample ID	Lab Sample ID	Analysis Method	Matrix	Analyte Name	Lab Qualifier	Result	EDD Reporting Limit	l Units
17_DGMW82-123	06-1875-6RE	CLP-Metal	AQ	POTASSIUM	В	4340	5000	ug/L
	06-1875-6	,		THALLIUM	В	4.1	10	ug/L
••	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		VANADIUM	В	6.3	50	ug/L
		••••••••••••••••••••••••		ZINC	В	10.3	20	ug/L

## Enclosure II

## **EPA Level IV Validation Reports**

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 21 through March 22, 2006

**LDC Report Date:** 

April 11, 2006

Matrix:

Water

Parameters:

**Volatiles** 

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1875

Sample Identification

02 DGMW59-123

02 NEW2-123

02_DGMW59-123MS

02_DGMW59-123MSD

02_NEW2-123MS

02 NEW2-123MSD

#### Introduction

This data review covers 6 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Contract Laboratory Program Statement of Work (SOW) OLM04.1 for Volatiles.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999); the following subsections correlate to the above guidelines.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
3/29/06	Dichlorodifluoromethane Chloroethane 1,1-Dichloroethane 2-Butanone 1,2-Dichloropropane Tetrachloroethene	30.4 40.3 26.3 81.9 40.1 26.0	02_NEW2-123 02_NEW2-123MS 02_NEW2-123MSD 06G1471MB01	J (all detects) UJ (all non-detects)	A
3/30/06	Dichlorodifluoromethane Chloroethane 2-Butanone 1,2-Dichloropropane 2-Hexanone Tetrachloroethene 1,3-Dichlorobenzene	36.3 29.9 73.5 38.1 33.9 30.1 25.2	02_DGMW59-123 02_DGMW59-123MS 02_DGMW59-123MSD 06G1481MB01	J (all detects) UJ (all non-detects)	A

All of the continuing calibration RRF values were within validation criteria.

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

No field blanks were identified in this SDG.

#### VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the SOW. All surrogate recoveries were within QC limits.

#### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### VIII. Laboratory Control Samples (LCS)

Although laboratory control samples were not required by the method, laboratory control samples were reported by the laboratory. Percent recoveries (%R) were within QC limits.

#### IX. Regional Quality Assurance and Quality Control

Not applicable.

#### X. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XI. Target Compound Identifications

All target compound identifications were within validation criteria.

#### XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

#### XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria.

#### XIV. System Performance

The system performance was within validation criteria.

#### XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### XVI. Field Duplicates

No field duplicates were identified in this SDG.

#### MCAS El Toro, CTO 084 Volatiles - Data Qualification Summary - SDG 06-1875

SDG	Sample	Compound	Flag	A or P	Reason
06-1875	02_NEW2-123	Dichlorodifluoromethane Chloroethane 1,1-Dichloroethane 2-Butanone 1,2-Dichloropropane Tetrachloroethene	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)
06-1875	02_DGMW59-123	Dichlorodifluoromethane Chloroethane 2-Butanone 1,2-Dichloropropane 2-Hexanone Tetrachloroethene 1,3-Dichlorobenzene	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)

MCAS El Toro, CTO 084 Volatiles - Laboratory Blank Data Qualification Summary - SDG 06-1875

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084 Volatiles - Field Blank Data Qualification Summary - SDG 06-1875

No Sample Data Qualified in this SDG

LDC#:_	14820A1_	VALIDATION COMPLETENESS WORKSHEET
SDG #:_	06-1875	Level H##V-   V
Laborato	ory: Applied Physics &	Chemistry Laboratory
METHO	D: GC/MS Volatiles (F	PA CLP SOW OLMO4 1)

Date: 4/11 /o/6
Page: _/of /
Reviewer: ______
2nd Reviewer: _______

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area	!	Comments
l.	Technical holding times	4	Sampling dates: 3/2/->2/06
11.	GC/MS Instrument performance check	$\phi$	
111.	Initial calibration	$\mathbf{A}$	
IV.	Continuing calibration	W	
V	Blanks	_ <del>_</del>	
VI.	Surrogate spikes	<b>A</b>	
VII.	Matrix spike/Matrix spike duplicates	4	
VIII.	Laboratory control samples	A	109
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	<u>-</u> #	
XI.	Target compound identification	_♦	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	_⋪	Not reviewed for Level III validation.
XIII.	Tentitatively identified compounds (TICs)	$\mathbf{A}$	Not reviewed for Level III validation.
XIV.	System performance	A	Not reviewed for Level III validation.
XV.	Overall assessment of data	4	
XVI.	Field duplicates	N	
XVII.	Field blanks	N	

Note: A = Acceptable ND = No compounds detected D = Duplicate
N = Not provided/applicable R = Rinsate TB = Trip blank
SW = See worksheet FB = Field blank EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation

M	H2U9 V						<del></del>
1 /	02NEW15-123	11 /	02_NEW2-123MS	21 /	OF HTIMBO	31	
2 (	0 <del>2NEW16-123 }</del>	12 /	02_NEW2-123MSD	22 2	066 H81MB0	32	-
3	02_DGMW59-123**	13		23		33_	
4 /	02_NEW2-123**	14		24		34	
5 /	<del>02_NEW11-123</del>	15		25		35	
6 /	17_DGMW82-123	16		26		36	
7 /	BT4-923	17		27		37_	
8 /	BT5-923	18		28		38_	
9	02_DGMW59-123MS	19		29		39	
10	02_DGMW59-123MSD	20		30		40	

DG #: 148-0 A1

#### **VALIDATION FINDINGS CHECKLIST**

니. 고 Method: Volatiles (EPA CLP SOW OLMO<del>8.1</del>)

Validation Area	Yes	юИ	NA	Findings/Comments
. Technica holding times				
All technical holding times were met.	1	<u>                                      </u>		
Cooler temperature criteria was met.		<u> </u>		'
II. GC/MS Instrument performance sheck				
Were the BFB performance results reviewed and found to be within the specified criteria?	_			
Were all samples analyzed within the 12 hour clock criteria?				
III: Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/	ļ		
Were all percent relative standard deviations (%RSD) $\leq$ 30% and relative response factors (RRF) $\geq$ 0.05?	/	1		
N/ Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) $\leq$ 25% and relative response factors (RRF) $\geq$ 0.05?				
V. Bianks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI Sunogate spikes				
Were all surrogate %R within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			1	
VII. Matrix spike/Matrix spike duplicettes				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples:				
Was an LCS analyzed for this SDG?			$\bot$	
Was an LCS analyzed per analytical batch?	/			

LDC #: <u>148704</u> | SDG #:<u>06-1875</u>

#### VALIDATION FINDINGS CHECKLIST

Page: of 3
Reviewer: 2nd Reviewer:

Validation Area	Yes	N	,	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/				
(X. Regional Quality Assurance and Quality Control					
Were performance evaluation (PE) samples performed?			1		
Were the performance evaluation (PE) samples within the acceptance limits?				/	<u> </u>
X. Internal standards					
Were internal standard area counts within -50% or +100% of the associated calibration standard?	1				
Were retention times within $\pm$ 30 seconds of the associated calibration standard?	/		$oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}$		
XL Target compound identification					
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/		$\perp$		
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	<u> </u>		$\perp$		
Were chromatogram peaks verified and accounted for?					,
XII Compound quantitation/CRQLs			<u> </u>		
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	1				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?					
XIII. Tentalively identified compounds (TICs)					
Were the major ions (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			1		
Were relative intensities of the major ions within $\pm$ 20% between the sample and the reference spectra?			1	7	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?					
KIV. System performence					
System performance was found to be acceptable.					
(V. Overall assessment of data					
Overall assessment of data was found to be acceptable.	$\overline{}$			T	
O/I: Field duplicates					
Field duplicate pairs were identified in this SDG.		1			
arget compounds were detected in the field duplicates.			/	7	

LDC #: 16-1875

#### **VALIDATION FINDINGS CHECKLIST**

Page: Sof 3
Reviewer: 9
2nd Reviewer: 9

Validation Area	Yes	No	NA	Findings/Comments
XVI; Field blanks				
Field blanks were identified in this SDG.		1		<b>/</b>
Target compounds were detected in the field blanks.			7	

#### TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA CLP SOW OLM04.2)

A. Chloromethane*	Q. 1,2-Dichloropropane**	GG. Xylenes, total	WW. Bromobenzene	MMM. Naphthalene
B. Bromomethane	R. cis-1,3-Dichloropropene	HH. Vinyl acetate	XX. 1,2,3-Trichloropropane	NNN. 1,2,3-Trichlorobenzene
C. Vinyl charide**	S. Trichloroethene	II. 2-Chloroethylvinyl ether	YY. n-Propylbenzene	OOO, 1,3,5-Trichiorobenzene
D. Chloroethane	T. Dibromochioromethane	JJ. Dichlorodifluoromethane	ZZ. 2-Chlorotoluene	PPP. trans-1,2-Dichloroethene
E. Methylene chloride	U. 1,1,2-Trichloroethane	KK. Trichlorofluoromethane	AAA. 1,3,5-Trimethylbenzene	QQQ. cis-1,2-Dichloroethene
F. Acetone	V. Benzene	LL. Methyl-tert-butyl ether	BBB. 4-Chlorotoluene	RRR. m,p-Xylenes
G. Carbon disulfide	W. trans-1,3-Dichloropropens	MM. 1,2-Dibromo-3-chloropropane	CCC, tert-Butylbenzene	SSS. o-Xylene
H. 1,1-Dichloroethene**	X. Bromoform*	NN. Diethyl ether	DDD. 1,2,4-Trimethylbenzene	TTT. 1,1,2-Trichioro-1,2,2-trifluoroethane
I. 1,1-Dichloroethane*	Y. 4-Methyl-2-pentanone	OO. 2,2-Dichloropropane	EEE. sec-Butylbenzene	UUU. Benzyl chloride
J. 1,2-Dichloroethene, total	Z. 2-Hexanone	PP. Bromochloromethane	FFF. 1,3-Dichlorobenzene	VVV. 4-Ethyltoluene
K. Chloroform**	AA. Tetrachioroethene	QQ. 1,1-Dichloropropens	GGG, p-isopropyltoluene	WWW. Ethanol
L. 1,2-Dichloroethane	BB. 1,1,2,2-Tetrachloroethane*	RR. Dibromomethane	HHH. 1,4-Dichlorobenzene	XXX. Ethyl ether
M. 2-Butanone	CC. Toluene**	SS. 1,3-Dichloropropane	III. n-Butyibenzene	
N. 1,1,1-Trichioroethane	DD. Chlorobenzene*	TT. 1,2-Dibromoethane	JJJ. 1,2-Dichlorobenzene	
O. Carbon tetrachioride	EE. Ethylbenzene**	UU. 1,1,1,2-Tetrachloroethane	KKK. 1,2,4-Trichlorobenzene	
P. Bromodichloromethane	FF. Styrene	W. isopropylbenzene	LLL. Hexachlorobutadiene	

* = Systen	= System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.											
Notes:					<del>-</del> .				_			
	<del></del>											

#### **VALIDATION FIND..... IS WORKSHEET Continuing Calibration**

	Page	-	_ot
	Reviewe	r:	
nd?	Reviewe	r:	0

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Were all percent differences (%D) ≤ 25% and relative response factors (RRF) ≥ 0.05?

#	Date	Standard ID	Compound	Finding %D (Limit: <u>&lt;</u> 25.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	3/-9/06	£14T1R01	11	30.4		4.11-12-	YUN
	7 /		Ð	40.3		OG HTT HBO!	
			IFF	262	·		
	·		7	81.9			
			Q	20.1	- <u>-</u>		<u>- 1</u>
<u> </u>			AA AX	26.0	-		
			8-**		0.26 (70.70)	· ·	Houle
<u> </u>							
							· ·
					·		
<u> </u>	3/30/06	4451201	7	36.3	•	3.9-10	J/W/A
<b></b>	/ /	(	<b>D</b> -	29.9		0641481 MBO	
<u> </u>			М.	73.5			
<b> </b>			<u>&amp;</u>	38.1			
<b> </b>			Z 4A	33.9			
<b> </b>		<u> </u>	AA	.30.			
<u> </u>			FFF	25.2			4
<u> </u>							
		·		- <u> </u>	<u> </u>		
		<u>.</u>		· .			
						-	
<u> </u>				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			·	<u> </u>			
						· · · · · · · · · · · · · · · · · · ·	
		·		<u> </u>			
				•		-	

LDC #: 18-04 SDG #:06-1875

# VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

•		
Reviewer:	Reviewer:	
2nd Reviewer:	nd Reviewer:	2

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF =  $(A_s)/(C_h)/(A_s)(C_y)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of compound, C_x = Concentration of compound,  $A_k$  = Area of associated internal standard  $C_k$  = Concentration of internal standard

S = Standard deviation of the RRFs

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF	RRF (   <i>U</i> std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	1-1-11	Methylene chloride (1st internal standard)	1.996	1.996	2.087	2.08T	4.90	1.89
	10712	1-/9/04	Trichlorethene (2nd internal standard)	0.294	0.294	0.303	0.303	6.72	6.70
		<u> </u>	Toluene (3rd internal standard)	1.507	1.507	1.578	1.518	4.46	4.46
2			Methylene chloride (1st internal standard)		7				
			Trichlorethene (2nd internal standard)						
			Toluene (3rd internal standard)						
3			Methylene chloride (1st internal standard)						,
			Trichlorethene (2nd internal standard)						
	<u> </u>		Toluene (3rd internal standard)						
4			Methylene chloride (1st internal standard)					,	
			Trichlorethene (2nd Internal standard)						
			Toluene (3rd internal standard)						

Comments:	Refer to Initial	l Calibration findings	worksheet for lis	st of qualifications	and associated	samples when	reported resul	ts do not agree v	within 10.0% of the
recalculated	results.				·				
			,		,		•		,

LDC #: 1482041 SDG #: 16-1875

# VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	_/of_/_
Reviewer:_	9-
2nd Reviewer:	e

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_{\bullet})(C_{\bullet})/(A_{\bullet})(C_{\bullet})$ 

RRF = continuing calibration RRF A_x = Area of compound,

A_a = Area of associated internal standard

 $C_{x} = Concentration of compound,$ 

C₁ = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	<b>%</b> D	%D
1	GIATIRO1	3/-2/4	Methylene chloride (1st Internal standard)	2.087	2.160	2.160	3.5	3.5
		7-1/06	Trichlorethene (2nd internal standard)	0.303	0.266	0.266	12.0	11
			Toluene (3rd internal standard)	1.578	1.545	1.545	1.8	1.8
2	£481201	3/30/06	Methylene chloride (1st internal standard)	2.087	2.035	2.035	2.5	2,5
			Trichlorethene (2nd internal standard)	0.303	0.754	0.254	16.	16.3
			Toluene (3rd Internal standard)	1.518	1.448	1.448	1.6	4.6
3			Methylene chloride (1st internal standard)	-				
			Trichlorethene (2nd Internal standard)			·		
			Toluene (3rd internal standard)		·			
4	:		Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)	_				
		]	Toluene (3rd Internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

#### **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification**

Page:_	
Reviewer:	Q
2nd reviewer:	
_	

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

99	A -4	Alexander de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capación de la capac	
The percent recoveries (%H	) of suffogates were recalculated to	the compounds identified below using the following calcula	ntion:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
		·	Reported	Recalculated	
Toluene-d8	(0	10.04	101	100	,
Bromofluorobenzene		10.19	. 102	102	0
1,2-Dichloroethane-d4	V	10.29	(0,3	103	0

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					

Sample ID:

	. ;.	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Toluene-d8				,		
Bromofluorobenzene						
1,2-Dichloroethane-d4						

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	·
Toluene-d8					
Bromofluorobenzene	·				
1,2-Dichloroethane-d4					

Sample ID:__

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					7
1,2-Dichloroethane-d4	·				

LDC #: 16-1875

# VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where:

SSC = Spiked sample concentration SA = Spike added

SC = Sample concentration

RPD = 1 MSC - MSDC 1 * 2/(MSC + MSDC)

MSC = Matrix spike percent recovery

MSDC = Matrix spike duplicate percent recovery

MS/MSD sample: 9/10

		oike	Sample	Spiked S		Matrix	Spike	Matrix Spike	Duplicate	MS/	MSD
Compound		ded	Concentration (/TU	Concen ( //	/ .	Percent F	ecovery	Percent R	ecovery	R	PD
	MS	MSD		Ms /	MSD	Reported	Recaic.	Reported	Recalc,	Reported	Recalculated
1,1-Dichloroethene	10	[0	ND	100	10.7	120	120	107	107	11	
Trichloroethene		1		11.3	10.3	113	113	103	10/3	9	9
Benzene				11.5	10.5	115	15	105	105	9	9
Toluene	1	/		12.0	11.0	1-0	120	110	110	9	9
Chlorobenzene				11.8	11.0	118	118	110	110	7	7

Comments: Refer to Matrix Spike/Matrix Spike Duplicates finding	gs worksheet for list c	of qualifications an	d associated samples	when reported results	do not agree within
10.0% of the recalculated results.	·	· <u>-</u>		· · · · · · · · · · · · · · · · · · ·	
	•				

#### **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification

Page:	_/of/
Reviewer:_	8-
2nd reviewer:_	
_	1

YN	OD: N/A N/A	GC/MS VOA (EPA CLP SOW OLM04.2)  Were all reported results recalculated and  Were all recalculated results for detected t				).0% of the	e reported	results'
Conce	ntratio	$n = \frac{(A_s)(I_s)(DF)}{(A_s)(RRF)(V_s)(%S)}$	Example:	1 .				
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D	NO	·	<b>:</b>		
A _k	=	Area of the characteristic ion (EICP) for the specific internal standard					•	
i,	=	Amount of internal standard added in nanograms (ng)	Conc. = (	) (	<u></u>	) (	)(	))
RRF	=	Relative response factor of the calibration standard.						•
V _e	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).	<b>=</b>					
Df	7.00	Dilution factor.		•				
%S	= .	Percent solids, applicable to soils and solid matrices only.		•				

#	Sample ID	Compound	Reported Concentration ( )	Calculated Concentration	Qualification
					(
	· · · · · · · · · · · · · · · · · · ·				
					·
		· · · · · · · · · · · · · · · · · · ·			
		<u> </u>			·
					(

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 21 through March 22, 2006

LDC Report Date:

April 11, 2006

Matrix:

Water

Parameters:

Metals

Validation Level:

NFESC Level III & IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1875

Sample Identification

02 DGMW59-123**

02_NEW2-123**

02 DGMW59-123MS

02 DGMW59-123DUP

^{**}Indicates sample underwent NFESC Level IV review

#### Introduction

This data review covers 4 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Contract Laboratory Program Statement of Work (SOW) for Inorganic Analysis, Multi-concentration, D.N. ILM04.2 for TAL Metals including Molybdenum.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) and incorporates updates per EPA SOW (D.N. ILM04.2); the following subsections correlate to the guidelines.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blanks are summarized in Section III.

Field duplicates are summarized in Section XIII.

Samples indicated by a double asterisk on the front cover underwent a NFESC Level IV review. A NFESC Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

All criteria for the initial calibration were met.

The frequency and analysis criteria of the initial calibration verification (ICV) and continuing calibration verification (CCV) were met.

CRDL standards for ICP and AA were analyzed and reported as required.

Instrument detection limits, interelement corrections and linear range analysis were performed at the required frequency.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No contaminant concentrations were found in the initial, continuing and preparation blanks with the following exceptions:

Method Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Mercury	0.063 ug/L	All samples in SDG 05-4158
ICB/CCB	Arsenic Barium Beryllium Cadmium Iron Lead Manganese Silver Thallium	1.663 ug/L 2.860 ug/L 0.385 ug/L 0.745 ug/L 5.387 ug/L 1.055 ug/L 1.436 ug/L 1.263 ug/L 2.002 ug/L	All samples in SDG 05-4158

Data qualification by the initial, continuing and preparation blanks (ICB/CCB/PBs) was based on the maximum contaminant concentration in the ICB/CCB/PBs in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample ID	Analyte	Reported Concentration	Modified Final Concentration	
02_DGMW59-123**	Arsenic Iron Mercury	5.6 ug/L 24.3 ug/L 0.059 ug/L	5.6U ug/L 24.3U ug/L 0.059U ug/L	
02_NEW2-123**	Arsenic Cadmium Lead Manganese Mercury Thallium	6.0 ug/L 0.53 ug/L 2.9 ug/L 1.4 ug/L 0.088 ug/L 3.7 ug/L	6.0U ug/L. 0.53U ug/L 2.9U ug/L 1.4U ug/L 0.088U ug/L 3.7U ug/L	

No field blanks were identified in this SDG.

#### IV. ICP Interference Check Sample (ICS) Analysis

The frequency of analysis was met.

The criteria for analysis were met.

#### V. Matrix Spike Analysis

Matrix spike (MS) samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### VI. Duplicate Sample Analysis

Duplicate (DUP) sample analyses were reviewed for each matrix as applicable. Results were within QC limits.

#### VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### VIII. Internal Standards (ICP-MS)

ICP-MS was not utilized in this SDG.

#### IX. Furnace Atomic Absorption QC

Graphite furnace atomic absorption was not utilized in this SDG.

#### X. ICP Serial Dilution

ICP serial dilution analysis was performed by the laboratory. The analysis criteria were met.

#### XI. Sample Result Verification

All sample result verifications were acceptable for samples on which a NFESC Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

#### XII. Overall Assessment of Data

Data flags have been summarized at the end of this report if data has been qualified.

#### XIII. Field Duplicates

No field duplicates were identified in this SDG.

#### MCAS El Toro, CTO 084 Metals - Data Qualification Summary - SDG 06-1875

#### No Sample Data Qualified in this SDG

#### MCAS El Toro, CTO 084 Metals - Laboratory Blank Data Qualification Summary - SDG 06-1875

SDG	Sample ID	Analyte	Modified Final Concentration	A or P
06-1875	02_DGMW59-123**	Arsenic iron Mercury	5.6U ug/L 24.3U ug/L 0.059U ug/L	A
06-1875	02_NEW2-123**	Arsenic Cadmium Lead Manganese Mercury Thailium	6.0U ug/L 0.53U ug/L 2.9U ug/L 1.4U ug/L 0.088U ug/L 3.7U ug/L	A

MCAS El Toro, CTO 084 Metals - Field Blank Data Qualification Summary - SDG 06-1875

No Sample Data Qualified in this SDG

SDG	#:14820A4 #:06-1875 ratory: <u>Applied Physics &amp;</u>		Le	PLETENI evel III/IV	ESS WORKSF		Page: 4/10/0 Page: of 1 Reviewer: 44 2nd Reviewer: 45		
MET	HOD: Metals (EPA CLP S	SOW ILMO4.2)					Zild Neviewer.		
	samples listed below were ation findings worksheets		ch of the f	ollowing va	alidation areas. Va	alidation finding	s are noted in attached		
	Validation Area Comme				Comments				
1.	Technical holding times		_A-	Sampling d	ates: 03/1, 2	2/06			
11.	Calibration	· · · · · · · · · · · · · · · · · · ·	A		· · · · · · · · · · · · · · · · · · ·				
111.	Blanks		5W						
IV.	ICP Interference Check Sar	nple (ICS) Analysis	H						
V.	Matrix Spike Analysis		A	3 145	loup				
<u>V1.</u>	Duplicate Sample Analysis		A		•				
VII.	Laboratory Control Samples	(LCS)	A	Les					
VIII	. Internal Standard (ICP-MS)		V	74.7	- Wiliza				
IX.	Furnace Atomic Absorption	QC	N	3					
<u> x.</u>	ICP Serial Dilution		A						
XI.	Sample Result Verification		A-	Not reviewed for Level III validation.					
XII.	Overall Assessment of Data	1	A		·	<del></del>	:		
XIII	Field Duplicates		h						
ΧIV	Field Blanks		N	<u> </u>	<del></del>				
Note:	A = Acceptable N = Not provided/applicabl SW = See worksheet	e R=Rin	o compound sate eld blank	s detected	D = Duplicate TB = Trip blar EB = Equipm	nk			
Valida	ted Samples: **Indicates sam	ple underwent Level I	V validation			· · · · · · · · · · · · · · · · · · ·			
1	0ZNEW15-123	11		21		31			
2	02NEW16-123	12		22		32			
3	02_DGMW59-123**	13		23		33			
4	02_NEW2-123**	14		24		34			
5	02_NEW11-123	15		25_		35	<u>-</u>		
6	17_DOMW82-123	16		26_		36			
7	02_DGMW59-123MS	17	-	27_		37			
8	02_DGMW59-123DUP	18		28_		38			
9	PB	19		29		39			
10		20		30	<u></u>	40			
Note	··								

LDC #:	14820A4
SDG #:	66-1875

#### **VALIDATION FINDINGS CHECKLIST**

Page:_	Lof 2
Reviewer:_	MH
2nd Reviewer:_	N
	<b>-</b>

### Method:Metals (EPA SOW ILM04.0)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	~			
Cooler temperature criteria was met.	/			
II. Galibration				
Were all instruments calibrated daily, each set-up time?	1			
Were the proper number of standards used?	1			
Were all initial and continuing calibration verification %Rs within the 90-110% (80- 120% for mercury and 85-115% for cyanide) QC limits?	~			
Were all initial calibration correlation coefficients $\geq 0.995$ ?				
Was a midrange cyanide standard distilled?			1	
III. Břánks				
Was a method blank associated with every sample in this SDG?	~			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
IV, ICP Interference Check Sample				
Were ICP interference check samples performed as required?	2			
Were the AB solution percent recoveries (%R) with the 80-120% QC limits?	/			
V. Matrix spikes				
Was a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS. Soil / Water.	1			
Were the MS percent recoveries (%R) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	/			
VI. Duplicata Analysas				
Was a duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated DUP. Soil / Water.	~			
Were the duplicate relative percent differences (RPD) $\leq$ 20% for waters and $\leq$ 35% for soil samples? A control limit of $\leq$ CRDL( $\leq$ 2X CRDL for soil) was used for samples that were $\leq$ 5X the CRDL, including when only one of the duplicate sample values were $\leq$ 5X the CRDL.	1			
VIII: Leboratory control samples				
Was an LCS anaylzed for this SDG?	7			
Was an LCS analyzed per extraction batch?	1			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 80-120% QC limits for water samples and laboratory established QC limits for soils?	1			

LDC #: 4870A4 SDG #: 06-1875

#### **VALIDATION FINDINGS CHECKLIST**

Page: 2 of 2 Reviewer: 447 2nd Reviewer: ____

Validation Area	Yes	No	NA	Findings/Comments
VIII. Internal Standards (Method 200.8)				
Were all the percent recoveries (%R) within the 60-125% of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity of the intensity o			1	
If the %Rs were outside the criteria, was a reanalysis performed?			/	
IX: Furnace Atomic Absorption QC				
If MSA was performed, was the correlation coefficients $\geq$ 0.995?			_	
Do all applicable analysies have duplicate injections?			1	
For sample concentrations > CRDL, are applicable duplicate injection RSD values < 20%?	٠		1	
Were analytical spike recoveries within the 85-115% QC limits?			/	
X, ICP Serial Dilution				
Was an ICP serial dilution analyzed if analyte concentrations were > 50X the IDL?	<b>V</b>			
Were all percent differences (%Ds) ≤ 10%?				
Was there evidence of negative interference? If yes, professional judgement will be used to qualify the data.		/	A	
XI: Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?			_	
Were the performance evaluation (PE) samples within the acceptance limits?			<b>1</b>	
XII; Sample Result Verification				
Were CRDLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	~			
Were results within the linear range of the ICP?	$\nu$			
XIII, Oyerall assessment of data				
Overall assessment of data was found to be acceptable.	1			
XIV: Field:duplicates				
Field duplicate pairs were identified in this SDG.	_	/		
Target analytes were detected in the field duplicates.			/	
XV, Field blanks				
Field blanks were identified in this SDG.		~		
Target analytes were detected in the field blanks.				

LDC #: 14820A4 SDG #: 06-1877

#### VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

	Page:			<u> </u>
	Reviewer:	<u> </u>	10-	
2nd	reviewer:		0~	
100				<del></del> .

All circled elements are applicable to each sample.

· [:	[
Matrix	Target Analyte List (TAL):
As_	Al, Sb, As, Ba, Ba, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo) B, Si, CN,
9	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Ne, Tl, V, Zn, Mo) B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, NI, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni; K, Se, Ag, Na, Tl, V, Zn, Ma, B, Sl, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe; Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al. Sb. As. Ba. Be, Cd. Ca. Cr. Co. Cu. Fe. Pb. Mg. Mn. Hg. Ni. K. Se. Ag. Na. Tl. V. Zn. Mo. B. Si. CN.
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN;
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
	Al. Sb. As. Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Π, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Π, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
	Analysis Method
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Sa, Ag, Na, Tl, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Ti, V, Zn, Mo, B, Si, CN,
	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, NI, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Si, CN;
	AD-

Comments: Mercury by CVAA if performed

	1 bandit
LDC #:_	14830A4
SDG #:	06-1874

#### VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

•	1	``	1.
Page:_		1	<u> </u>
Reviewer:		Mo	
2nd Reviewer:		-	

METHOD: Trace metals (EPA CLP SOW ILM04.0) Soil preparation factor applied:

Sample Concentration units, unless otherwise noted:

Asso

Associated Samples:

									ampis identifi	cation				
Analyte	Maximum PB ^a (mg/Kg)	Maximum PB" (ug/L)	Maximum ICB/CCB ⁴ (ug/L)	letin	3	4	BOR	2-	5	-0 6				
Al	(mg/xg/	(49/5)												
Sb			Α.					•						
As			1,663	8.315	t-b	6.0	6.7	5-1	6-6	3-6				
Ва	-		2,860	14.3										
Be			0.385	1,955										
Cd			1,745	3.7%		953								
Са	,												<u> </u>	
Cr														
Co														<u> </u>
Cu								·	<u> </u>	<b></b>	ļ		<del> </del>	<u> </u>
Fe			5,387	26.935	24,3			·				<u> </u>		<del> </del>
Pb		· ·	1055	5.775		2.9	1.6				ļ		<del> </del>	<del> </del>
Mg			1 // 9	0.0		7.4	· · · · · · · · · · · · · · · · · · ·				<u> </u>	<del>                                     </del>	<u> </u>	<del>                                     </del>
Mn		0.063	1436	7.18		0.088	1 2/2	0.061	0,068	0.056				<del> </del>
Hg Ni		0,067		0315	0,259	0,240	0, 065	<u> </u>	0,000	0,450	·		<u> </u>	<del> </del>
K												<del> </del>	<del> </del> -	<del>                                     </del>
Se	·									<u> </u>		<u> </u>		<del> </del>
Ag			1,263	6.315		<u> </u>			-					<u> </u>
Na			1, - 5/											
π			2,002	(0,0)		<b>3.7</b>	ン・ラ	2-1	3.8	4.		1		
<b>v</b>						1		<del></del>						
Zn						·								
В								·						· ·
Мо														
Sr														

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

LDC	#:	1482	0 A4 1877	
SDG	#:	h-	1847	•

# VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

	Page:_	[ of [
	Reviewer:	MH
2nd	Reviewer:	~

METHOD: Trace metals (EPA CLP SOW ILM04.0)

An initial and continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = <u>Found</u> x 100 True Where, Found = concentration (in ug/L) of each analyte measured in the analysis of the ICV or CCV solution

True = concentration (in ug/L) of each analyte in the ICV or CCV source

					Recalculated	Reported	
Standard ID	Type of Analysis	Ejement	Found (ug/L)	True (ug/L)	%Я	%R	Acceptable (Y/N)
IN	ICP (Initial calibration)	K	14920	(5000	99.5	99.5	4
	GFAA (Initial calibration)						
IN	CVAA (Initial calibration)	L4g	1.45	7.5	99.3	99.3	Υ
Lev	ICP (Continuing calibration)	<i>V</i> :	2016	2000	102.8	(02.8	
	GFAA (Continuing calibration)					·	·
cel	CVAA (Continuing calibration)	Hg	4.93	5.0	98.6	98-6	У
	Cyanide (Initial calibration)	0				,	
	Cyanide (Continuing calibration)					f	

	of the recalculated results.		•		of qualifications and associated samples when reported results do not agree within 10.09
		1		1	
					<u></u>
<del></del>					

CALCLC.4C4

#### VALIDATION FINDINGS WORKSHEET **Level IV Recalculation Worksheet**

Reviewer: 2nd Reviewer:

METHOD: Trace metals (EPA CLP SOW ILM04.0)

Percent recoveries (%R) for an ICP interference check sample, a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $%R = Found \times 100$ True

Where, Found = Concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Found = SSR (spiked sample result) - SR (sample result).

Concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

 $RPD = |S-D| \times 100$ (S+D)/2

Where,

S =

Original sample concentration

D =

Duplicate sample concentration

An ICP serial dilution percent difference (%D) was recalculated using the following formula:

%D = ||-SDR| x 100

Where, I=

initial Sample Result (ug/L)

SDR =

Serial Dilution Result (ug/L) (Instrument Reading x 5)

·					Recalculated	Reported	
Sample ID	Type of Analysis	Element	Found / S / I (units)	True / D / SDR (units)	%R / RPD / %D	%R / RPD / %D	Acceptable (Y/N)
TGSAR	ICP interference check	Be	49000	Erro	980	980	4
Les	Laboratory control sample	Sb	505,3	Gov	[0]	[0]	
7	Matrix spike	Cu	(SSR-SR)	250	102	(02	
8	Duplicate	Ba	33.8	134.4	0.4	0.4	
3	ICP serial dilution	Na	81-5	82.39	1-)	1~1	7

Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10,0% of the recalculated results.

LDC #:	14820AU
SDG #:	06-1871

# VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	
Reviewer:	WH.
2nd reviewer:	9'

METHOD: Trace metals (EPA CLP SOW ILM04.0)

Please see qua	alifications below t	for all o	questions answe	ered "N". Not applica	able questions are identified as "N/A".	
N N/A	Have results bee	en repo	orted and calcul	ated correctly?		
N N/A N N/A	Are results within	n the c	alibrated range	of the instruments	and within the linear range of the ICP?	
N N/A	Are all detection		_			
			. )		•	
Detected analy	rta resulte for	•	<b>.</b>		were recalculated and verified using	the

following equation: Concentration = Recalculation: (RD)(FV)(Dil) (In. Vol.)(%S) From the zew later RD Raw data concentration Fig = 44.93 mg/L = 44930 ag/L F۷ Final volume (ml) In. Vol. initial volume (ml) or weight (G) Dil Dilution factor **%**S Decimal percent solids

#	Sample ID	Anziyte	Reported Concentration ( ugh )	Calculated Concentration (	Acceptable (Y/N)
	3	Ay	5.6	5.6	Ч
		Ba	(34	134	
		Ca	172000	192000	
		cy.	3.5	3.4	
		Gu .	11.8	11.8	
		Fie	×4.3	24.3	
		Mg	44900	44950	
	·	₩g.	0.059	820,0	
		M. 0	8./'	8-1	
		N:	t.4	54	
		K K	1670	\$ (670	
		Se	±19	sig	
<u> </u>		Na	82450	४५५०	
		<u> </u>	9,0	9.0	/
		Zn	12-1	12-/	<i></i>
					-
			-		
					(
			\		



#### LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

CDM Federal 9444 Farnham Street, Suite 210 San Diego, CA 92123

May 1, 2006

ATTN: Mr. Michael Higman

SUBJECT: MCAS El Toro CTO 084, Data Validation

Dear Mr. Higman,

Enclosed is the final validation report and Excel qualification sheet for the fractions listed below. This SDG were received on April 17th, 2006.

#### LDC project# 14858:

SDG#	<u>Fraction</u>
06-1934	Volatiles (Method CLP SOW OLM04.1) TPH-Gas (SW 846 Method 8015B) TPH-Diesel (SW 848 Method 8015B)

The following deliverables are submitted under this report:

•	Attachment I	Sample ID Cross Reference and Data Review Level
•	Attachment II	Overall Data Qualification Summary
•	Attachment III	CDM Database Qualification Summary
•	Enclosure I	EPA Level III ADR Outliers (including manual review outliers)
•	Enclosure II	EPA Level IV DVR (manual review)

The data validation was performed in accordance to the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999. Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The following items were evaluated during the review:

- Holding Times
- Sample Preservation
- Cooler Temperatures
- Initial Calibration (Manual Review)
- Continuing Calibration (Manual Review)
- Blanks
- Surrogates
- Internal Standards (Manual Review)
- Matrix Spike/Matrix Spike Duplicates
- Laboratory Control Samples



- Detection and Quantitation Limits
- Field QC Samples

Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

# Attachment I

Sample ID Cross Reference and Data Review Level

# **Sample Cross Reference**

 Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Mar-2006	16_MPE1-123	06-1934-1	N	3510C	8015B DRO	III
28-Mar-2006	16_MPE1-123	06-1934-1	N	5030B	8015B GRO	Ш
28-Mar-2006	16_MPE1-123	06-1934-1	N	5030B	CLP-VOC	m
28-Mar-2006	BT8-923	06-1934-10	ТВ	5030B	CLP-VOC	ш
28-Mar-2006	16_MPE1-123	06-1934-1DL	N	5030B	CLP-VOC	m
28-Mar-2006	16_MPE1-123MS	06-1934-1MS	MS	5030B	8015B GRO	III
28-Mar-2006	16_MPE1-123MSD	06-1934-1MSD	MSD	5030B	8015B GRO	III
28-Mar-2006	16_MPE1-323	06-1934-2	FD	3510C	8015B DRO	III
28-Mar-2006	16_MPE1-323	06-1934-2	FD	5030B	8015B GRO	Ш
28-Mar-2006	16_MPE1-323	06-1934-2	FD	5030B	CLP-VOC	Ш
28-Mar-2006	16_MPE1-323	06-1934-2DL	FD	5030B	CLP-VOC	m
28-Mar-2006	16_MW01-123	06-1934-3	N	3510C	8015B DRO	Ш
28-Mar-2006	16_MW01-123	06-1934-3	N	5030B	8015B GRO	Ш
28-Mar-2006	16_MW01-123	06-1934-3	N	5030B	CLP-VOC	Ш
28-Mar-2006	16_MW01-123	06-1934-3DL	N	5030B	CLP-VOC	III
28-Mar-2006	16_MW01-323	06-1934-4	FD	3510C	8015B DRO	OE .
28-Mar-2006	16_MW01-323	06-1934-4	FD	5030B	8015B GRO	III
28-Mar-2006	16_MW01-323	06-1934-4	FD	5030B	CLP-VOC	. 111
28-Mar-2006	16_MW01-323	06-1934-4DL	FD	5030B	CLP-VOC	III
28-Mar-2006	16_MW04-123	06-1934-5	N	3510C	8015B DRO	IV
28-Mar-2006	16_MW04-123	06-1934-5	<b>N</b> .	5030B	8015B GRO	IV
28-Mar-2006	16_MW04-123	06-1934-5	N _.	5030B	CLP-VOC	IV
28-Mar-2006	16_MW04-123	06-1934-5DL	N	5030B	CLP-VOC	IV
28-Mar-2006	16_MW05-123	06-1934-6	N	3510C	8015B DRO	iV
28-Mar-2006	16_MW05-123	06-1934-6	N	5030B	8015B GRO	IV
28-Mar-2006	16_MW05-123	06-1934-6	N	5030B	CLP-VOC	IV



N = Normal Sample FD = Fleid Duplicate TB = Trip Blank FB = Field Blank MS = Matrix Spike MSD = Matrix Spike Duplicate

## **Sample Cross Reference**

	· ·					
Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Mar-2006	16_MW09-123	06-1934-7	N	3510C	8015B DRO	111
28-Mar-2006	16_MW09-123	06-1934-7	N	5030B	8015B GRO	111
28-Mar-2006	16_MW09-123	06-1934-7	N	5030B	CLP-VOC	111
28-Mar-2006	16_MW11-123	06-1934-8	N	3510C	8015B DRO	Ш
28-Mar-2006	16_MW11-123	06-1934-8	N	5030B	8015B GRO	111
28-Mar-2006	16_MW11-123	06-1934-8	N	5030B	CLP-VOC	Ш
28-Mar-2006	16_MW11-123	06-1934-8DL	N	5030B	CLP-VOC	111
28-Mar-2006	BT7-923	06-1934-9	ТВ	5030B	CLP-VOC	111

# Attachment II

# **Overall Data Qualification Summary**

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61934						·.				
8015B DRO	16_MPE1-123	AQ	N			· · · · · · · · · · · · · · · · · · ·				
				PHC AS DIESEL FUEL	0.5	0.02J		J	mg/L	
8015B DRO	16_MPE1-323	AQ	FD					************		
				PHC AS DIESEL FUEL	0.5	0.5U		UJ	mg/L	
8015B GRO	16_MPE1-123	AQ	N							
				PHC AS GASOLINE	0.05	0.01J		UJ	mg/L	
8015B GRO	16_MPE1-323	AQ	FD							
	· <del>-</del>			PHC AS GASOLINE	0.05	0.02J		UJ	mg/L	
8015B GRO	16_MW01-123	AQ	N					•••••		
				PHC AS GASOLINE	0.05	0.02J		UJ	mg/L	
8015B GRO	16_MW01-323	AQ	FD	•••••••••••••••••••••••••••••••••••••••	••••••		• • • • • • • • • • • • • • • • • • • •			
				PHC AS GASOLINE	0.05	0.04J		UJ	mg/L	
8015B GRO	16_MW04-123	AQ	N							
·	10_111104-120	/\u	,14	PHC AS GASOLINE	0.05	0.03J		U	mg/L	
8015B GRO	16 MW05-123	AQ	N				•••••			
00138 0110	10_1010005-125	ΛQ	14	PHC AS GASOLINE	0.05	0.03J		. <b>U</b>	mg/L	
8015B GRO	16_MW09-123	AQ	N						ilig/L	
50 13B GRO	10_1414409-123	AQ	IA	PHC AS GASOLINE	0.05	0.05J		U	mg/L	
8015B GRO	46 BNM44 402		i	THO AS CASCENE		•••••				
0013B GRO	16_MW11-123	AQ	N	PHC AS GASOLINE	0.05	0.01J		U	mg/L	
	40 14054 400			FIIO AS GASOLINE	0.05				ilig/L	
CLP-VOC	16_MPE1-123	AQ	N	4.4 DIOLII ODOFTUANE		41.6				
				1,1-DICHLOROETHANE 1,2-DICHLOROPROPANE	1	1U 1U		UJ UJ	ug/L	
				2-BUTANONE (MEK)	1 10	10U		UJ	ug/L ug/L	
				CHLOROETHANE	10	1U		UJ.	ug/L ug/L	
	•			CIS-1,2-DICHLOROETHENE	1	0.4J		J	ug/L ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L ug/L	
				TETRACHLOROETHENE	1	1U		UJ	-	
				TETRACILLORUETHENE	1	10		OJ	ug/L	

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reasor Code
SDG: 61934										
CLP-VOC	16_MPE1-323	AQ	FD			*******				
				1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				CIS-1,2-DICHLOROETHENE	1	0.5J		ij	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	
CLP-VOC	16_MW01-123	AQ	N				••		······	• • • • • • • • • • • • • • • • • • • •
				1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
				1,2-DICHLOROPROPANE	1	1U		ÜJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
			CHLOROFORM	1	0.8J		J	ug/L		
				DICHLORODIFLUOROMETHANE	1 .	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	
CLP-VOC	16_MW01-323	AQ	FD						· · · · · · · · · · · · · · · · · · ·	•
,				1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
				1,2-DICHLOROPROPANE	1	10		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				CHLOROFORM	1	0.8J		J	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	
CLP-VOC	16_MW04-123	AQ	. N				•••••			
	-		•	1,1-DICHLOROETHANE	1	1U		ÜJ	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				CHLOROFORM	1	0.5J		J	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	

N = Normal Sample TB = Trip Blank FD = Field Duplicate FB = Field Blank

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61934		ŧ								<del></del>
CLP-VOC	16_MW05-123	AQ	N					• • • • • • • • • • • • • • • • • • • •		•••••
	_			1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				CHLOROFORM	1	0.6J		J	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
	*			TETRACHLOROETHENE	1	1U		UJ	ug/L	
CLP-VOC	16_MW09-123	AQ	N	••••••••••••						
				1,1-DICHLOROETHANE	1	1U		UJ	ug/L	
	,			1,2-DICHLOROPROPANE	1	1U		ÜJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	11		J	ug/L	
				TETRACHLOROETHENE	1	1U		ŪJ .	ug/L	
CLP-VOC	16_MW11-123	AQ	N	•		• • • • • • • • • • • • • • • • • • •				•••••
	-			1,1-DICHLOROETHANE	1	0.4J		J	ug/L	
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				1,3-DICHLOROBENZENE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				2-HEXANONE	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1 1	1U		UJ	ug/L	
CLP-VOC	BT7-923	AQ	TB		•••••					
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				1,3-DICHLOROBENZENE	1	1U		· UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				2-HEXANONE	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
				DICHLORODIFLUOROMETHANE	1	10		UJ	ug/L	
				TETRACHLOROETHENE	1	1U		UJ	ug/L	

N = Normal Sample TB = Trip Blank FD = Field Duplicate FB = Field Blank

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 61934										
CLP-VOC	BT8-923	AQ	ТВ							
				1,2-DICHLOROPROPANE	1	1U		UJ	ug/L	
				1,3-DICHLOROBENZENE	1	1U		UJ	ug/L	
				2-BUTANONE (MEK)	10	10U		UJ	ug/L	
				2-HEXANONE	10	10U		UJ	ug/L	
				CHLOROETHANE	1	1U		UJ	ug/L	
		*		DICHLORODIFLUOROMETHANE	1	1U		UJ	ug/L	
				TETRACHLOROETHENE	1	10		ŲJ	ug/L	



# Attachment III

**CDM Database Qualification Summary** 

# CDM Federal Programs Corporation Reason for Qualified Results SDG Nos.: 61934

	Non
tactad	Detected

Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Detected Qualifier	Detected Qualifier	Analyte Name	Reason
61934	16_MPE1-123	8015B GRO	8006619	U	-	PHC AS GASOLINE	Present in method blank
61934	16_MPE1-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61934	16_MPE1-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61934	16_MPE1-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61934	16_MPE1-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61934	16_MPE1-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61934	16_MPE1-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61934	16_MPE1-323	8015B GRO	8006619	U		PHC AS GASOLINE	Present in method blank
61934	16_MPE1-323	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61934	16_MPE1-323	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61934	16_MPE1-323	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61934	16_MPE1-323	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61934	16_MPE1-323	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61934	16_MPE1-323	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61934	16_MW01-123	8015B GRO	8006619	U		PHC AS GASOLINE	Present in method blank
61934	16_MW01-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61934	16_MW01-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61934	16_MW01-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61934	16_MW01-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61934	16_MW01-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61934	16_MW01-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61934	16_MW01-323	8015B GRO	8006619	U		PHC AS GASOLINE	Present in method blank
61934	16_MW01-323	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61934	16_MW01-323	CLP-VOC	78875			1,2-DICHLOROPROPANE	Continuing calibration percent difference
61934	16_MW01-323	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61934	16_MW01-323	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61934	16_MW01-323	CLP-VOC	75718		·J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61934	16_MW01-323	CLP-VOC	127184	<del></del> -	J	TETRACHLOROETHENE	Continuing calibration percent difference
61934	16_MW04-123	8015B GRO	8006619	U		PHC AS GASOLINE	Present in method blank
61934	16_MW04-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61934	16_MW04-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61934	16_MW04-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference

# **CDM Federal Programs Corporation** Reason for Qualified Results SDG Nos.: 61934

	Non	
Detected	Detected	
	Qualifier	

Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Detected Qualifier	Non Detected Qualifier	Analyte Name	Reason
61934	16_MW04-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61934	16_MW04-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61934	16_MW04-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61934	16_MW05-123	8015B GRO	8006619	U		PHC AS GASOLINE	Present in method blank
61934	16_MW05-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61934	16_MW05-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61934	16_MW05-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61934	16_MW05-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61934	16_MW05-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61934	16_MW05-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61934	16_MW09-123	8015B GRO	8006619	U		PHC AS GASOLINE	Present in method blank
61934	16_MW09-123	CLP-VOC	75343		J	1,1-DICHLOROETHANE	Continuing calibration percent difference
61934	16_MW09-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61934	16_MW09-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61934	16_MW09-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61934	16_MW09-123	CLP-VOC	75718	J		DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61934	16_MW09-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61934	16_MW11-123	8015B GRO	8006619	U		PHC AS GASOLINE	Present in method blank
61934	16_MW11-123	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61934	16_MW11-123	CLP-VOC	541731		J	1,3-DICHLOROBENZENE	Continuing calibration percent difference
61934	16_MW11-123	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61934	16_MW11-123	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
61934	16_MW11-123	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61934	16_MW11-123	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61934	16_MW11-123	CLP-VOC	127184		J	TETRACHLOROETHENE	Continuing calibration percent difference
61934	BT7-923	CLP-VOC	78875		J	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61934	BT7-923	CLP-VOC	541731		J	1,3-DICHLOROBENZENE	Continuing calibration percent difference
61934	BT7-923	CLP-VOC	78933		J	2-BUTANONE (MEK)	Continuing calibration percent difference
61934	BT7-923	CLP-VOC	591786		J	2-HEXANONE	Continuing calibration percent difference
61934	BT7-923	CLP-VOC	75003		J	CHLOROETHANE	Continuing calibration percent difference
61934	BT7-923	CLP-VOC	75718		J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61934	BT7-923	CLP-VOC	127184	· · · · · · · · · · · · · · · · · · ·	J	TETRACHLOROETHENE	Continuing calibration percent difference

#### Project No # : 14858

### CDM Federal Programs Corporation Reason for Qualified Results

SDG Nos.: 61934

Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.	Non Detected Detected Qualifier Qualifier	l Analyte Name	Reason
61934	BT8-923	CLP-VOC	78875	J .	1,2-DICHLOROPROPANE	Continuing calibration percent difference
61934	BT8-923	CLP-VOC	541731	J	1,3-DICHLOROBENZENE	Continuing calibration percent difference
61934	BT8-923	CLP-VOC	78933	J	2-BUTANONE (MEK)	Continuing calibration percent difference
61934	BT8-923	CLP-VOC	591786	J	2-HEXANONE	Continuing calibration percent difference
61934	BT8-923	CLP-VOC	75003	J	CHLOROETHANE	Continuing calibration percent difference
61934	BT8-923	CLP-VOC	75718	J	DICHLORODIFLUOROMETHANE	Continuing calibration percent difference
61934	BT8-923	CLP-VOC	127184	J	TETRACHLOROETHENE	Continuing calibration percent difference

# **Enclosure I**

# EPA Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

SDG 06-1934

		, ,
LDC #: 14858A1	VALIDATION COMPLETENESS WORKSHEET	Date: 4/25/06
√ SDG #: <u>06-1934</u>	Level III/IV	Page:/of/
Laboratory: <u>Applied Physics 8</u>	Chemistry Laboratory	Reviewer:
METHOD: GC/MS Volatiles (	EPA CLP SOW OLMOVA)	2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	<u>^</u>	Sampling dates: 3/28/06
11.	GC/MS Instrument performance check	Δ	
101.	Initial calibration	۵	
IV.	Continuing calibration	58	
V.	Blanks	Δ	
VI.	Surrogate spikes	Δ	
VII.	Matrix spike/Matrix spike duplicates	7	
VIII.	Laboratory control samples	A	トトラ
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	۵	
XI.	Target compound identification	٨	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	SW	Not reviewed for Level III validation.
XIII.	Tentitatively identified compounds (TICs)	2	Not reviewed for Level III validation. not reported
XIV.	System performance	Δ	Not reviewed for Level III validation.
XV.	Overall assessment of data	5W	
XVI.	Field duplicates	9W	p=143 7,4 5,7 4,8
XVII.	Field blanks	ND	TB = 15, 16

Note:	A = Acceptable	ND = No compoun	ds detecte	ed D = Duplicate
	N = Not provided/applicable	R = Rinsate		TB = Trip blank

SW = See worksheet FB = Field blank EB = Equipment blank

Validated Samples: ** Indicates sample underwent Level IV validation

	Water					
1	1 16_MPE1-123	11	1 16_MW05-123**	21 1	0661471-MB-01	31
2	16_MPE1-123DL	12	16_MW09-123	222	0691481-MB-0	32
3	16_MPE1-323	13	7- 16_MW11-123	23		33
4	16_MPE1-323DL	14	16_MW11-123DL	24		34
5	16_MW01-123	15	BT7-923 TB	25		35
6	16_MW01-123DL	16	BT8-923 TØ	26		36
7	1 16_MW01-323	17		27		37
8	16_MW01-323DL	18		28		38
9	16_MW04-123**	19	·	29		39
10	7- 16_MW04-123DL**	20		30		40

#### TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA CLP SOW OLM04.2)

A. Chloromethane*	Q. 1,2-Dichloropropane**	GG. Xylenes, total	WW. Bromobenzene	MMM. Naphthalene
B. Bromomethane	R. cls-1,3-Dichloropropene	HH. Vinyl acetate	XX. 1,2,3-Trichloropropane	NNN. 1,2,3-Trichlorobenzene
C. Vinyl choride**	S. Trichloroethene	II. 2-Chloroethylvinyl ether	YY. n-Propylbenzene	OOO. 1,3,5-Trichlorobenzene
D. Chloroethane	T. Dibromochioromethane	JJ. Dichlorodifluoromethane	ZZ, 2-Chiorotoluene	PPP. trans-1,2-Dichloroethene
E. Methylene chloride	U. 1,1,2-Trichloroethane	KK. Trichlorofluoromethane	AAA. 1,3,5-Trimethylbenzene	QQQ. cis-1,2-Dichloroethene
F. Acetone	V. Benzene	LL. Methyl-tert-butyl ether	BBB. 4-Chiorotoluene	RRR. m,p-Xylenes
G. Carbon disulfide	W. trans-1,3-Dichloropropene	MM. 1,2-Dibromo-3-chloropropane	CCC, tert-Butylbenzene	SSS. o-Xylene
H. 1,1-Dichloroethene**	X. Bromoform*	NN. Diethyl ether	DDD. 1,2,4-Trimethylbenzene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane
I. 1,1-Dichloroethane*	Y. 4-Methyl-2-pentanone	OO. 2,2-Dichloropropane	EEE. sec-Butylbenzene	UUU. Benzyl chloride
J. 1,2-Dichloroethene, total	Z. 2-Hexanone	PP. Bromochloromethane	FFF. 1,3-Dichlorobenzene	VVV. 4-Ethyltoluene
K. Chloroform**	AA. Tetrachloroethene	QQ. 1,1-Dichioropropene	GGG. p-isopropyitoluene	WWW. Ethanol
L. 1,2-Dichloroethane	BB. 1,1,2,2-Tetrachloroethane*	RR. Dibromomethane	HHH. 1,4-Dichlorobenzene	XXX. Ethyl ether
M. 2-Butanone	CC. Toluene**	SS. 1,3-Dichloropropane	ill. n-Butylbenzene	
N. 1,1,1-Trichloroethane	DD. Chlorobenzene*	TT. 1,2-Dibromoethane	JJJ. 1,2-Dichlorobenzene	
O. Carbon tetrachloride	EE. Ethylbenzene**	UU. 1,1,1,2-Tetrachloroethane	KKK. 1,2,4-Trichlorobenzene	
P. Bromodichloromethane	FF. Styrene	VV. isopropyibenzene	LLL. Hexachlorobutadiene	

* = System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.							
Notes:							
	·						

#### **VALIDATION FIND!** S WORKSHEET Continuing Calibration

Reviewer 2nd Reviewer

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Y (N N/A

Were all percent differences (%D)  $\leq$  25% and relative response factors (RRF)  $\geq$  0.05?

#	Date	Standard ID	Compound	Finding %D (Limit: ≤25.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	3/29/06	61471901	77	30.4		06G1471-MB-01	J/W]/A
			D	40.3		1,3,5,7, 9,11,12	j.
			, I	26.3			
			M	શ.9			
			Q	40.1	•		
			/ AA	26.0		<b>V</b>	<u> </u>
	3 30 06	G1481Q01	77	36-3		061481-MB-01	۵/۲۸/ ۲
	- 1		D	29.9		2, 4, 6, 8, 10,	
			Q	38.1		13-16	
			Ž	33.9	·		
			/ 44	30.1			
			FFF	25.2		<u> </u>	V
			M	73.5		<u> </u>	<u> </u>
		·				<u> </u>	
							<u> </u>
	·						
						•	

#### Method Blank Outlier Report

Lab Reporting Batch: 61934

Lab ID: APCL

Analysis Method: 8015B GRO

Analysis Date: 03/31/2006

Preparation Type: 5030B

Preparation Date: 03/31/2006

Method Blank Lab Sample ID: 06G1483-MB-01

Preparation Batch: 06G1483

,	Reporting			Lab	
PHC AS GASOLINE	Result	Limit	Units	Qual	Comments
Method Blank Result:	0.01	0.05	mg/L	J	

PHC AS GASOLINE was qualified due to method blank contamination in the following associated samples:

Client Sample ID	<b>Lab Sample ID</b>	Dilution	Result	Lab Qual	Result Units
16_MPE1-123	06-1934-1	1	0.01	J	mg/L
16_MPE1-323	06-1934-2	1	0.02	J	mg/L
16_MW01-123	06-1934-3	1	0.02	J	mg/L
16_MW01-323	06-1934-4	1	0.04	J	mg/L
16_MW04-123	06-1934-5	1	0.03	J	mg/L
16_MW05-123	06-1934-6	1	0.03	j	mg/L
16_MW09-123	06-1934-7	1	0.05	J	mg/L

Project Number and Name:

6218.084 - EL TORO

ADR 8.0

Report Date: 4/19/2006 16:51

Page 1 of 2

#### Method Blank Outlier Report

Lab Reporting Batch: 61934

Method Blank Result:

Lab ID: APCL

Analysis Method: 8015B GRO

Analysis Date: 04/04/2006

Preparation Type: 5030B

Preparation Date: 04/04/2006

Method Blank Lab Sample ID: 06G1499-MB-01

Preparation Batch: 06G1499

**PHC AS GASOLINE** 

Reporting Result Limit 0.02 0.05

Qual Comments

Lab Units

mg/L

PHC AS GASOLINE was qualified due to method blank contamination in the following associated

Client Sample ID	Lab Sample ID	Dilution	Result	Lab Qual	Result Units
16_MW11-123	06-1934-8	1	0.01	J	mg/L

Project Number and Name:

6218.084 - EL TORO

ADR 8.0

Report Date: 4/19/2006 16:51

Page 2 of 2

# Reporting Limits Outlier Report (detected results reported below the reporting limit)

Lab Report Batch: 61934

Lab ID: APCL

Client Sample ID	Lab Sample ID	Analysis Method	Matrix	Analyte Name	Lab Qualifier	Result	EDD Reporting Limit	Units
16_MPE1-123	06-1934-1	8015B DRO	AQ	PHC AS DIESEL FUEL	J	0.02	0.5	mg/L
		8015B GRO		PHC AS GASOLINE	J	0.01	0.05	mg/L
		CLP-VOC		CIS-1,2-DICHLOROETHENE	J	0.4	1	ug/L
16_MPE1-323	06-1934-2	8015B GRO		PHC AS GASOLINE	J	0.02	0.05	mg/L
	***************************************	CLP-VOC	•••••	CIS-1,2-DICHLOROETHENE	J	0.5	1	ug/L
16_MW01-123	06-1934-3	8015B GRO		PHC AS GASOLINE	J	0.02	0.05	mg/L
	06-1934-3DL	CLP-VOC		CHLOROFORM	J	0.9	2	ug/L
	06-1934-3			CHLOROFORM	J	0.8	1	ug/L
16_MW01-323	06-1934-4	8015B GRO		PHC AS GASOLINE	J	0.04	0.05	mg/L
	06-1934-4DL	CLP-VOC		CHLOROFORM	J	0.9	2	ug/L
	06-1934-4			CHLOROFORM	J	0.8	1	ug/L
16_MW04-123	06-1934-5	8015B GRO		PHC AS GASOLINE	J	0.03	0.05	mg/L
	06-1934-5DL	CLP-VOC	•••••	CHLOROFORM	J	0.7	2	ug/L
	06-1934-5			CHLOROFORM	J	0.5	1	ug/L
16_MW05-123	06-1934-6	8015B GRO	•••••	PHC AS GASOLINE	J	0.03	0.05	mg/L
		CLP-VOC	••••	CHLOROFORM	J	0.6	1	ug/L /
16_MW11-123	06-1934-8	8015B GRO		PHC AS GASOLINE	J	0.01	0.05	mg/L \
	06-1934-8DL	CLP-VOC		1,1,2-TRICHLOROTRIFLUOROETHAN	 J	3	5	ug/L
	06-1934-8			1,1-DICHLOROETHANE	J	0.4	1	ug/L
	06-1934-8DL		••	CHLOROFORM	J	3	5	ug/L

# QC Outlier Report: Field Duplicates (Non-qualified Outliers)

Lab Report Batch: 61934

Lab ID: APCL

			Field Sample			Field Sample Duplicate					]		
Analysis Method	Matrix	Analyte Name	Client Sample ID	Ana Type	Result	Lab Qualifier	Client Sample Duplicate ID	Ana Type	Result	Lab Qualifier	RPD Dup* (%)	RPD Criteria (%)	Result Units
8015B DR	AQ	PHC AS DIESEL FUEL	16_MPE1-123	RES	0.02	J	16_MPE1-323	RES	0.5	U	200.0	20	mg/L
8015B GR	AQ	PHC AS GASOLINE		RES	0.01	J		RES	0.02	J	66.7	20	mg/L
CLP-VOC	AQ	CIS-1,2-DICHLOROETHENE		RES	0.4	J	• • • • • • • • • • • • • • • • • • • •	RES	0.5	J	22.2	20	ug/L
8015B GR	AQ	PHC AS GASOLINE	16_MW01-123	RES	0.02	J.	16_MW01-323	RES	0.04	J	66.7	20	mg/L

*Note: Outlier report also includes analytes detected in one sample but not in the related sample, i.e., analyte was detected in the field sample but not in the field duplicate sample, or vice versa. In this case, RPD value assigned to the field duplicate sample is 200.

Project Number and Name:

6218.084 - EL TORO

ADR 8.0

Report Date: 4/20/2006 09:31

Page 1 of 1

# Enclosure II

# **EPA Level IV Validation Reports**

# Laboratory Data Consultants, Inc. Data Validation Report

**Project/Site Name:** 

MCAS El Toro, CTO 084

**Collection Date:** 

March 28, 2006

LDC Report Date:

April 26, 2006

Matrix:

Water

**Parameters:** 

**Volatiles** 

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1934

Sample Identification

16 MW04-123

16 MW04-123DL

16 MW05-123

#### Introduction

This data review covers 3 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Contract Laboratory Program Statement of Work (SOW) OLM04.2 for Volatiles.

This review follows USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999); the following subsections correlate to the above guidelines.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds.

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
3/29/06	Dichlorodifluoromethane Chloroethane 1,1-Dichloroethane 2-Butanone 1,2-Dichloropropane Tetrachloroethene	30.4 40.3 26.3 81.9 40.1 26.0	16_MW04-123 16_MW05-123 06G1471MB01	J (all detects) UJ (all non-detects)	A
3/30/06	Dichlorodifluoromethane Chloroethane 1,2-Dichloropropane 2-Hexanone Tetrachloroethene 1,3-Dichlorobenzene 2-Butanone	36.3 29.9 38.1 33.9 30.1 25.2 73.5	16_MW04-123DL 06G1481MB01	J (all detects) UJ (all non-detects)	

All of the continuing calibration RRF values were within validation criteria.

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks.

Samples BT7-923 and BT8-923 were identified as trip blanks. No volatile contaminants were found in these blanks.

#### VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the SOW. All surrogate recoveries were within QC limits.

#### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

#### VIII. Laboratory Control Samples (LCS)

Although laboratory control samples were not required by the method, laboratory control samples were reported by the laboratory. Percent recoveries (%R) were within QC limits.

#### IX. Regional Quality Assurance and Quality Control

Not applicable.

#### X. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XI. Target Compound Identifications

All target compound identifications were within validation criteria.

#### XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
16_MW04-123	Trichloroethene	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	А

#### XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria.

#### XIV. System Performance

The system performance was within validation criteria.

#### XV. Overall Assessment of Data

The overall assessment of data was acceptable. In the case where more than one result was reported for an individual sample, the least technically acceptable results were rejected as follows:

Sample	Compound	Flag	A or P
16_MW04-123	Trichloroethene	R	А
16_MW04-123DL	All TCL compounds except Trichloroethene	R	А

Data flags are summarized at the end of this report if data has been qualified.

#### XVI. Field Duplicates

No field duplicates were identified in this SDG.

#### MCAS El Toro, CTO 084 Volatiles - Data Qualification Summary - SDG 06-1934

SDG	Sample	Compound	Flag	A or P	Reason
06-1934	16_MW04-123 16_MW05-123	Dichlorodifluoromethane Chloroethane 1,1-Dichloroethane 2-Butanone 1,2-Dichloropropane Tetrachloroethene	J (all detects) UJ (all non-detects)	А	Continuing calibration (%D)
06-1934	16_MW04-123DL	Dichlorodifluoromethane Chloroethane 2-Butanone 1,2-Dichloropropane 2-Hexanone Tetrachloroethene 1,3-Dichlorobenzene	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)
06-1934	16_MW04-123	Trichloroethene	J (all detects)	А	Compound quantitation and CRQLs
06-1934	16_MW04-123	Trichloroethene	R	Α	Overall assessment of data
06-1934	16_MW04-123DL	All TCL compounds except Trichloroethene	R	Α	Overall assessment of data

MCAS El Toro, CTO 084 Volatiles - Laboratory Blank Data Qualification Summary - SDG 06-1934

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084 Volatiles - Field Blank Data Qualification Summary - SDG 06-1934

No Sample Data Qualified in this SDG

	LDC #: 14858A1 VALIDATION COMPLETENESS WORKSHEET  SDG #: 06-1934 Level III/IV Page: 1 of / Reviewer: 2nd Reviewer: 2nd Reviewer:									
METHOD: GC/MS Volatiles (EPA CLP SOW OLM04.2)  The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attaction findings worksheets.								lings are noted in attached		
	<u> </u>	Validation	<u>Area</u>					Comm	<u>ents</u>	
	<u> </u>	Technical holding times			<u> </u>	Sampling	dates: 3/	28/06		
	11.	GC/MS Instrument performa	ince ch	ieck	Δ	<u> </u>			<del></del>	
	101.	Initial calibration			Δ	ļ				
	IV.				50	ļ			<del></del>	
	<u>V.</u>	Blanks			٨	<u> </u>				
.	VI.				<u> </u>					
	VII.		plicates	<u>s</u>	N					
	VIII.	1			A	الد م	<del></del>			
	IX.		and Q	uality Control	N A					
	X	Internal standards			Δ	<u> </u>		<del></del>		
	XI.				<u> </u>		ed for Level III v			
	XII.				ωw) ,		red for Level III v	· · · · · ·	<u> </u>	1.1
	XIII.	<u> </u>	ounas	(TICs)	7		ed for Level III v		<u>07</u>	reported
	XIV.	<del>                                     </del>				Not review	ed for Level III v	ralidation.		
	XV.	Overall assessment of data			5W					
	XVI.	. Field duplicates		N	900	p = 1	<del>~ }</del>	7,4		5,7 6,8
	XVII.	. Field blanks			NO	TB=	-	BT7-	92	3 a
	Note: Validat	A = Acceptable N = Not provided/applicable SW = See worksheet ted Samples: ** Indicates samp		Rinsate FB = Fie	o compounds eld blank IV validation	Τ.	D = Du B = Trip blank EB = Ec	BT6 - plicate quipment blank	- 9: ·	ン <b>ろ</b> 
	1	1 16_MPE1-123-	11	1 16_MW05-123	3**	21 1	0661471	-MB-01	31	
		16_MPE1=123DL*		16_MW09-12		222	1		1	
		10_MPE1-323		ク 18_MW11-12:		23			33	
		16_MPE1-323DL		<b>≁</b> 16_MW11 128		24			34	
		1 - <del>16_MW01-123</del>	15	- 2 RT7-923 【安	,	25			35_	
	6	16_MW01-123DL		BT8 023 TØ	/	26			36	
	7	16_MW01-323 -	17			27			37	
	8	+ -16_MW01-323DL*	18		-	28			38	
	9	t 16_MW04-123**	19			29			39	
	10	>- 16_MW04-123DL**	20			30			40	

LDC #: 1488A/ SDG #: 06-1934

#### **VALIDATION FINDINGS CHECKLIST**

Method: Volatiles (EPA CLP SOW OLMO<del>3.1</del>)

Validation Area	Yes	No	NA	Findings/Comments	
l. Tachnical holding times					
All technical holding times were met.	1	1			
Cooler temperature criteria was met.	/	1			
II: GC/MS instrument performance check					
Were the BFB performance results reviewed and found to be within the specified criteria?					
Were all samples analyzed within the 12 hour clock criteria?					
III, Initial calibration					
Did the laboratory perform a 5 point calibration prior to sample analysis?	1				
Were all percent relative standard deviations (%RSD) $\leq$ 30% and relative response factors (RRF) $\geq$ 0.05?	/	ł			
IV: Continuing calibration					
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/	١			<i>;</i>
Were all percent differences (%D) $\leq$ 25% and relative response factors (RRF) $\geq$ 0.05?		\ \	-		`
V. Blankş					
Was a method blank associated with every sample in this SDG?	~				
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?	/			·	
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.					
VI. Surrogate spikes					
Were all surrogate %R within QC limits?					
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			,		
VII; Matrix spike/Matrix spike duplicates					
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		÷		2	
Was a MS/MSD analyzed every 20 samples of each matrix?			7		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?					
VIII. Laboratory control samples					
Was an LCS analyzed for this SDG?					<i>-</i> -
Was an LCS analyzed per analytical batch?					<u>-</u>

LDC #: 1488A/ SDG #: 06-1934

#### **VALIDATION FINDINGS CHECKLIST**

Page: 36f 3
Reviewer: 7
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	-	<u> </u>		
IX: Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?	<u> </u>	<u> </u>		
Were the performance evaluation (PE) samples within the acceptance limits?				
X. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			
Were retention times within $\pm$ 30 seconds of the associated calibration standard?				
XI. Target compound identification				
Were relative retention times (RRT's) within $\pm$ 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CROt.s				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		•		
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII: Tentatively identified compounds (TICs)				
Were the major lons (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?				•
Were relative intensities of the major ions within $\pm$ 20% between the sample and the reference spectra?				•
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?			1	
XIV: System performance				
System performance was found to be acceptable.	/			
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XVI: Field duplicates				
Field duplicate pairs were identified in this SDG.	1			
Target compounds were detected in the field duplicates.				

		1251		
SDG #:	8	6-	173	7

#### **VALIDATION FINDINGS CHECKLIST**

Page: 3 of	3
Reviewer:	(
2nd Reviewer:	Ì

Validation Area	Yes	No	NA	Findings/Comments
XVII; Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

#### TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA CLP SOW OLM04.2)

A. Chloromethane*	Q. 1,2-Dichloropropane**	GG, Xylenes, total	WW. Bromobenzene	MMM. Naphthalene
B. Bromomethane	R. cis-1,3-Dichloropropene	HH. Vinyl acetate	XX. 1,2,3-Trichioropropane	NNN. 1,2,3-Trichiorobenzene
C. Vinyl choride**	S. Trichloroethene	II. 2-Chloroethylvinyl ether	YY. n-Propyibenzene	OOO. 1,3,5-Trichlorobenzene
D. Chloroethane	T. Dibromochloromethane	JJ. Dichlorodifluoromethane	ZZ, 2-Chlorotoluene	PPP. trans-1,2-Dichloroethene
E. Methylene chloride	U. 1,1,2-Trichloroethane	KK. Trichlorofluoromethane	AAA. 1,3,5-Trimethylbenzene	QQQ. cis-1,2-Dichloroethene
F. Acetone	V. Benzene	LL. Methyl-tert-butyl ether	BBB. 4-Chlorotoluene	RRR. m,p-Xylenes
G. Carbon disulfide	W. trans-1,3-Dichloropropens	MM. 1,2-Dibromo-3-chloropropane	CCC, tert-Butylbenzene	SSS, o-Xylene
H. 1,1-Dichloroethene**	X. Bromoform*	NN. Diethyl ether	DDD. 1,2,4-Trimethylbenzene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane
I. 1,1-Dichloroethane*	Y. 4-Methyl-2-pentanone	OO. 2,2-Dichloropropane	EEE. sec-Butylbenzene	UUU. Benzyl chloride
J. 1,2-Dichloroethene, total	Z. 2-Hexanone	PP. Bromochloromethane	FFF. 1,3-Dichlorobenzene	VVV. 4-Ethyltoluene
K. Chloroform**	AA. Tetrachloroethene	QQ. 1,1-Dichloropropene	GGG. p-isopropyltoluene	WWW. Ethanol
L. 1,2-Dichloroethane	BB. 1,1,2,2-Tetrachloroethane*	RR. Dibromomethane	HHH. 1,4-Dichlorobenzene	XXX. Ethyl ether
M. 2-Butanone	CC. Toluene**	SS. 1,3-Dichloropropane	III. n-Butylbenzene	
N. 1,1,1-Trichloroethane	DD. Chlorobenzene*	TT. 1,2-Dibromoethane	JJJ. 1,2-Dichlorobenzene	
O. Carbon tetrachloride	EE. Ethylbenzene**	UU. 1,1,1,2-Tetrachloroethane	KKK. 1,2,4-Trichlorobenzene	
P. Bromodichioromethane	FF. Styrene	W. Isopropyibenzene	LLL. Hexachlorobutadiene	

* = System performance check compounds (SPCC) for RRF;	** = Calibration check compounds (CCC) for %RSD.	

Notes:	

LDC #: 14858A/ SDG #: 06-1934

### VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration</u>

	Page:/	_of
	Reviewer:	M
2nd	Reviewer:	7

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN/N/A

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

Y(N) N/A Were all percent differences (%D)  $\leq$  25% and relative response factors (RRF)  $\geq$  0.05?

#	Date	Standard ID	Compound	Finding %D (Limit: <25.0%)	Finding RRF (Limit: <u>&gt;</u> 0.05)	Associated Samples	Qualifications
	3/29/06	61471901	77	30.4		06G1471-MB-01	7/11/6
<b> </b>	<b> </b>		Ī	40.3			
<b> </b>			M	81.9		<del>                                     </del>	
			Q	40.1			
			- AA	26.0		$\downarrow$	$\checkmark$
	2 30 06	G1481Q01	77	36.3		0691481-MB-01	۵/د۱/ لـ
	2/20/00	91401901	D D	29,9		2, 4, 0, 8 (10,	- 1/CN/ C
			Q	38.		13 716	
			7.	33.9			
<b> </b>			/ 44	30.)	·		
<b> </b>		<u> </u>	FFF	25.2		Į.	V
<b> </b>			<u> </u>	73.5	<u> </u>		
<b> </b>						<u> </u>	
-	! [		1				
					·		
-							
<b> </b>							
<u> </u>							
<b></b>					·		
<b> </b> -							
<u> </u>						<u> </u>	
<u> </u>	<u> </u>		<u> </u>				
<u> </u>	l		- <u>Lani</u>	<u> </u>			

CONCAL1C4

(	1. 1. 1
LDC #:	14858A1
SDG #:	06-1934

## VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page:	_/of_	7					
Reviewer:	D						
2nd Reviewer:	7						

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Y/N N/A

Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?

Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

_					
#	Date	compound Sample 1D	Finding	Associated Samples	Qualifications
		S	exceeded cal range	+357	YAdit
			J	(9)13 '	•
	·				

Comments:	See sample calculation	verification worksheet for	recalculations	· .	 			
	•	·		•	 	 	 	

LDC #: 14 85BA 1 SDG #: 66-1934

## VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page:	of	1
Reviewer:		
2nd Reviewer:	7.7	

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

YN N/A Was the overall quality and usability of the data acceptable?

#	Date	compound <del>Sample ID</del>	Finding	Associated Samples	Qualifications
		S	exceeded cal range	[3] [9] B	R/A
			U		
		all except 5	deluter	2, 4, 6, 8 (10, 4	₹
			·		
		·			
					·
				•	

Comments:	



#### **VALIDATION FINDINGS WORKSHEET** Initial Calibration Calculation Verification

	_		_
F	age:_	of	
Revi	ewer:_	17	
2nd Revi	ewer:_		

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_h)/(A_h)(C_x)$ average RRF = sum of the RRFs/number of standards

 $A_x$  = Area of compound,  $C_x$  = Concentration of compound,

S = Standard deviation of the RRFs

 $A_k$  = Area of associated internal standard  $C_k$  = Concentration of internal standard

%RSD = 100 * (S/X)

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF ( 2.0 std)	RRF (20 std)	Average RRF (initial)	Average RRF (Initial)	%RSD	%RSD
1	19A L	12/9/05	Methylene chloride (1st internal standard)	2.115	2.115	2.087	2.087	4.90	4.90
			Trichlorethene (2nd internal standard)	0.312	0.322	0.303	0.303	6.72	6.72
			Toluene (3rd internal standard)	1.612	1.612	1.518	1.518	4.46	4.46
2			Methylene chloride (1st internal standard)						
			Trichlorethene (2nd internal standard)				·		
			Toluene (3rd internal standard)						
3			Methylene chloride (1st Internal standard)						
			Trichlorethene (2nd internal standard)						
			Toluene (3rd internal standard)						·
4			Methylene chloride (1st internal standard)						
			Trichlorethene (2nd internal standard)					·	
			Toluene (3rd internal standard)						

Comments:	Refer to Initial	Calibration	findings	worksheet	for lis	t of	qualifications	and	associated	samples	when	reported	results	do no	t agree	within	10.0%	of th	e
recalculated	results.																		Τ
		-					•							····					_
												•							

LDC #: 14 858 A SDG #: 06-1934

### VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	of	_
Reviewer:		
2nd Reviewer:		

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{i_k})/(A_{i_k})(C_x)$ 

RRF = continuing calibration RRF

 $A_x =$  Area of compound,  $C_x =$  Concentration of compound,  $A_{in}$  = Area of associated internal standard  $C_{in}$  = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	61471901	3/29/06	Methylene chloride (1st internal standard)	2.087	2.160	2.160	3.5	3,5
		•	Trichiorethene (2nd internal standard)	0. 303	0.266	0.266	12.0	12-0
			Toluene (3rd internal standard)	1.518	1. इपु	1-545	1.8	ا ا
2			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)					
3	G147801	3/30/06	Methylene chloride (1st internal standard)		2.035	2.035	2.5	2-5
			Trichlorethene (2nd internal standard)		0.254	0.254	16.1	16.1
			Toluene (3rd internal standard)		1.448	1.448	4.6	4.6
4			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10,0% of the recalculated results.

CONCLC.1C4

LDC #: 14898A | SDG #: 06-1934

#### **VALIDATION FINDINGS WORKSHEET Surrogate Results Verification**

	, , ,
Page:_	of
Reviewer:	19
2nd reviewer:	

ETHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

Sample ID: #9

SS = Surrogate Spiked

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8	10	99	99	. 99	6
Bromofluorobenzene	1	9.2	92	92	1
1,2-Dichloroethane-d4		10.6	106	106	4

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8			-		
Bromofluorobenzene					
1,2-Dichloroethane-d4					

ımple ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	' Percent 'Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene			·		
1,2-Dichloroethane-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4	·				

Sample ID:_

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					

LDC	#:	14/358	M	
SDG	#:	06-	193	4

#### **VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification**

	Page:_	of	
	Reviewer:		5
2nd	Reviewer:		

METHOD: GC/MS VOA (EPA CLP SOW OLM04.2)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration

SA = Spike added

RPD = | LCS - LCSD | * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

61471601- LCS LCS ID: ___

	SI	oike	Spiked Sample				LCSD		LCS/LCSD	
Compound	(	lded )	Concen (	tration )	Percent F	Percent Recovery		Percent Recovery		D ·
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
Vinyl chloride										
1,2-Dichloroethane										
Carbon tetrachloride					·					
1,2-Dichloropropane										
Trichloroethene .	10	NA	10.5	pa	105	105				
1,1,2-Trichloroethane										
Benzene	10	AN	10.6	ДЧ	104	106	NA	-		
cis-1,3-Dichloropropene										
Bromoform										
Tetrachloroethene										
1,2-Dibromoethane								·		
1,4-Dichlorobenzene										

Comments:	Refer to Laborato	ory Control	Sample finding	s worksheet for	list of qu	alifications and	l associated	samples	when reported	results do	not agree	within 10	<u>ე.0%</u>
of the recalc	culated results.								*				

LDC #:	1485	BA )
`ງG #:		

Percent solids, applicable to soils and solid

#### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	/of_/_
Reviewer:_	B
2nd reviewer:	

M	ETHOD:	GC/MS VOA (EPA CLP SOW OLM04.2)	
$\mathbf{Y}$	N N/A	Were all reported results recalculated an	d verified for all level IV samples?
Y	N N/A	Were all recalculated results for detected	d target compounds agree within 10.0% of the reported results?
c	Concentration	$\begin{array}{ll} \text{on} &=& \underline{(A_{\bullet})(I_{\bullet})(DF)} \\ && \underline{(A_{\bullet})(RRF)(V_{\bullet})(\%S)} \end{array}$	Example:
A	× =	Area of the characteristic ion (EICP) for the compound to be measured	sample 1.D. #9. 1,1,2-Trichlorotizhorothan
Ą	in =	Area of the characteristic ion (EICP) for the specific internal standard	
i,	=	Amount of internal standard added in nanograms	Conc. = (15/63)(10)(
•		(ng)	(37656)(1.910)()()
R	RF =	Relative response factor of the calibration standard.	
. <b>V</b> ,	. =	Volume or weight of sample pruged in milliliters (ml) or grams (g).	=
_		Dilution feeter	

%S	matrices only.	plicable to soils and soild	·		
#	Sample ID	Compound	Reported Concentratio ( )	Calculated Concentration	Qualification
\					
					1.
		·			
_	·				<u> </u>
	·				
	·				1
				<u> </u>	
	<del></del>				<del> </del>
			·		<u>                                     </u>
			·		
$\dashv$					
+					·  - · · · · · · · · · · · · · · · · · ·
$\neg$	•				

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 28, 2006

LDC Report Date:

April 26, 2006

Matrix:

Water

Parameters:

Total Petroleum Hydrocarbons as Gasoline

**Validation Level:** 

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1934

Sample Identification

16_MW04-123

16_MW05-123

#### Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8015B for Total Petroleum Hydrocarbons (TPH) as Gasoline.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

#### a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than or equal to 20.0%.

#### b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No total petroleum hydrocarbons as gasoline contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Analysis Date	Compound	Concentration	Associated Samples
06G1483MB01	3/31/06	TPH as gasoline	0.01 mg/L	All samples in SDG 06-1934

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
16_MW04-123	TPH as gasoline	0.03 ug/L	0.05U ug/L
16_MW05-123	TPH as gasoline	0.03 ug/L	0.05U ug/L

No field blanks were identified in this SDG.

#### IV. Accuracy and Precision Data

#### a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

#### b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

#### V. Target Compound Identification

All target compound identifications were within validation criteria.

#### VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

#### VII. System Performance

The system performance was acceptable.

#### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### IX. Field Duplicates

No field duplicates were identified in this SDG.

#### MCAS El Toro, CTO 084

Total Petroleum Hydrocarbons as Gasoline - Data Qualification Summary - SDG 06-1934

#### No Sample Data Qualified in this SDG

#### MCAS El Toro, CTO 084

Total Petroleum Hydrocarbons as Gasoline - Laboratory Blank Data Qualification Summary - SDG 06-1934

SDG	Sample	Compound	Modified Final Concentration	A or P
06-1934	16_MW04-123	TPH as gasoline	0.05U ug/L	Α
06-1934	16_MW05-123	TPH as gasoline	0.05U ug/L	Α

#### MCAS El Toro, CTO 084

Total Petroleum Hydrocarbons as Gasoline - Field Blank Data Qualification Summary - SDG 06-1934

No Sample Data Qualified in this SDG

SDG # Labora	: 14858A7 : 06-1934 atory: Applied Physics &	<u>Chen</u>		Le atory	evel III			HEET		Date: <u>4/25/</u> Page: / of // Reviewer: // 2nd Reviewer:
The sa						validatio	on areas. \	√alidation	find	ings are noted in attached
	Validation	Area						Comme	nts_	·
l.	Technical holding times			Δ		3/28	pu			
ila.	Initial calibration			Δ			ı			
llb.	Calibration verification			4	100	: 15				
III.	Blanks			SW						
tVa.	Surrogate recovery			Δ						
IVb.	Matrix spike/Matrix spike dup	licates		٨						
IVc.	Laboratory control samples			Δ.				_		
V.	Target compound identification	on	•	7	Not revie	wed for Le	evel III validati	ion.		
VI.	Compound Quantitation and		<b>.</b>	^	Not reviewed for Level III validation.  Not reviewed for Level III validation.					
VII.	System Performance			Δ.						
VIII.	Overall assessment of data			A						
IX.	Field duplicates	.1			D= 1+2 3+4					
X.	Field blanks		<u> </u>	N				<del></del>		
Note: /alidateo	A = Acceptable N = Not provided/applicable SW = See worksheet d Samples: ** Indicates samp		Rinsate FB = Fie			TB = Trip		nent blank		
1 1	16-MPE1-123-	11 \	066148	3- MB- (	01 21	T		3	11	
- T	16_MPE1-323-	12-9	06614		a   22				12	
1	16_MW01-123•	13			23	1			3_	
	16 MW01-323	14			24				14	
1	16 MW04-123**	15			25				5	
1	16 MW05-123**	16			26				6	
1	16_MW09-123	17			27				7	
7		18			28				8	
1	16 MPE1-123MS	19			29				9	. "
1	16 MPE1-123MSD	20			30				ю	. 4.
	<u> </u>	. 23	<u> </u>		100	<del></del>	<del></del>		<u></u>	

LDC #: 14858A7 SDG #: 06-1934

#### **VALIDATION FINDINGS CHECKLIST**

Method: GC HPLC				
Validation Area	Yes	No	NA.	Findings/Comments
Priechnical foolding times on a fact that the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of				
All technical holding times were met.	\ \rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\rac{1}{\chi}}}}}}}} \rightinter\rightine \righting \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty \tinfty			
Cooler temperature criteria was met.	./			
Hamhalicaligration (4.6)				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) < 20%?				
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?		/		
Did the initial calibration meet the curve fit acceptance criteria?				
Were the RT windows properly established?				
iv Goninuing Calibrations				
What type of continuing calibration calculation was performed?%D or%R				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) ≤ 15%.0 or percent recoveries 85-115%?				
Were all the retention times within the acceptance windows?		- Carrier	l comment	
Viblanos :				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?			<u> </u>	
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
Vi Sprogatespikes				
Were all surrogate %R within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			_	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?		711 11 3 10 10 10		
VII: Mainx spike/Mainx spike/duplicates ( 😤 ) 👙 🚜 🚜 🚜				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		/		
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		_		
VIII Tatoratory sonirolls amples, HGZ 18-37, 11-39, 11-42, 11-39				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed ner extraction batch?	$I \nearrow I$			

#### VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

2	Page:_	of/
	Reviewer:_	
2nd	Reviewer:	

METHOD: GC	/HPLC	

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 * (S/X)

A = Area of compound,
C = Concentration of compound,
S = Standard deviation of the CF
X = Mean of the CFs

				<del>)                                    </del>	Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	! 	CF ( \v0 Ustd)	CF (1000std)	Average CF (initial)	Average CF (initial)	%RSD	%RSD
1	Lupt-083	12/19/05	gasoline		25816.75	25816.75	25919.3	25919.3	1.892	1.892
								<u> </u>		
2	,						,			
		,								
		<u> </u>								
3									•	
										. ,
	· :									
4										
				: :						
	]			<del></del>						

Comments:	Refer to Initial Calib	ration findings work	sheet for list of au	alifications and assoc	iated samples v	when reported resu	ılts do not agree wi	<u>thin 10.0% of the recalculated</u>
results.							•	·:
	* -						<u> </u>	

LDC #:_	14	458	3 4	47	
SDG #:	0	6-	9	3	4

#### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification**

Page:_	
Reviewer:_	
2nd Reviewer:	/

		-
METHOD: GC	HPLC	

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF
CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

#	Standard ID	Calibration Date	Compound	Average CF(Ical)/ CCV Conc.	Reported  CF/Conc.  CCV	Recalculated  CF/Conc.  CCV	Reported %D	Recalculated %D
1_	to 14839	3/3/06	gasoline	1	1	.1	0	٥
2								
3								
4		·						
					·			

Comments:	Refer to Continuing	Calibration findings workshe	et for list of qualifications	and associated samples where	n reported results do not	agree within 10.0% of	the
recalculated							
							<del></del>

CONCLC.1S

LDC #: 14 8A1
SDG#: 02/1934

#### VALIDATION FIND 3S WORKSHEET Surrogate Results Verification

Page:	61_1
Reviewer:	~ P7
2nd reviewer:	,

METHOD: GC __ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:

	Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
					Reported	Recalculated	
	48FB	not special	100	108	108	108	D
<b> </b>		' '					
ļ			· · · · · · · · · · · · · · · · · · ·				

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	· · · · · · · · · · · · · · · · · · ·

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
				·		
					_	

#### **VALIDATION FINDINGS WORKSHEET** Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	1 of_	1
Reviewer:	g	
2nd Rev	,	

		•
METHOD:	GØ	HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below

using the following calculation: %Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked concentration

SC = Sample concentration

RPD =(((SSCMS - SSCMSD) * 2) / (SSCMS + SSCMSD))*100

SA = Spike added MS = Matrix spike percent recovery

MSD = Matrix spike duplicate percent recovery

9410 MS/MSD samples:

Compo	ound	Spi Add ( www.	ied	Sample Conc.	Spike S Concer	Sample stration	Matrix Percent F		Matrix Spike Duplicate		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
Облир		MS ·	MSD		MS	MSD	Reported	Recalc.	Reported	Recaic.	Reported	Recalc.		
Gasoline	(8015)	1	1	0.01	1.11	1.02	110	110	101	101	9	9		
Diesel	(8015)													
Benzene	(8021B)													
Methane	(RSK-175)													
2,4-D	(8151)													
Dinoseb	(8151)													
Naphthalene	(8310)													
Anthracene	(8310)													
HMX	(8330)													
2,4,6-Trinitrot	oluene (8330)													
								ļ			ļ			
							<b></b>							
		H	1	11	][		1	!	11	1	ff.	{		

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within

10.0% of the recalculated results.

MSDCLCNew.wpd





LDC #:_	11 18A7
SDG #:	06-1934

# VALIDATION FINE S WORKSHEET <u>Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification</u>

/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Pag	<u>/of_</u>
Reviewer:	77
2nd Re	eviewer:

METHO	D:	

_			
GC	H	PL	C

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where SSC = Spiked concentration SA = Spike added

SC = Sample concentration

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

LCS = Laboratory Control Sample percent recovery

LCSD = Laboratory Control Sample duplicate percent recovery

LasID LCS/LCSD samples:

	Sp	ike ded	Sample	Spike S	Sample	LC	os	LCS	SD.	LCS/L	CSD
Compound	1 mg		Cone.	Concer ( we	ntration	Percent I	Recovery	Percent Recovery		RPD	
	LCS	LCSD		LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)	\	\ \ \	O	1.01	1.02	101	101	102	102		1
Diesel (8015)		:									
Benzene (8021B)											
Methane (RSK-175)											
2,4-D (8151)											
Dinoseb (8151)											
Naphthalene (8310)											
Anthracene (8310)										,	
HMX (8330)											
2,4,6-Trinitrotoluene (8330)											

Comments: Refer to Laboratory Control Sample/Laboratory	Control Sample Duplicate findings worksheet for list of qualifications and associated samples when reported	<u>:d</u>
results do not agree within 10.0% of the recalculated results	3,	

LDC #: 14 858 A7 SDG #: 06 - 1934	VALIDATION FINDING Sample Calculation		Pa Review 2nd Review
	culated and verified for all level IV sar r detected target compounds within t		
Concentration= (A)(Fv)(Df) (RF)(Vs or Ws)(%S/100)  A= Area or height of the compound to be measured Fv= Final Volume of extract Df= Dilution Factor	Example: Sample ID. #5	Compound Name	Justin
RF= Average response factor of the compound In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid	Concentration = 73619	9.267 × 1	

#	Sample ID	Compound	Reported Concentrations ( )	Recalculated Results Concentrations ( )	Qualifications

Comments:	 				 
<u> </u>	 	<del></del>	 	 <del></del>	 



# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 28, 2006

LDC Report Date:

April 26, 2006

Matrix:

Water

**Parameters:** 

Total Petroleum Hydrocarbons as Diesel

Validation Level:

NFESC Level IV

Laboratory:

Applied P & Ch Laboratory

Sample Delivery Group (SDG): 06-1934

Sample Identification

16_MW04-123

16 MW05-123

#### Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA SW 846 Method 8015B for Total Petroleum Hydrocarbons (TPH) as Diesel.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical or advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section IX.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

#### a. Initial Calibration

Initial calibration of compounds was performed as required by the method.

The percent relative standard deviations (%RSD) of calibration factors for compounds were less than or equal to 20.0%.

#### b. Calibration Verification

Calibration verification was performed at required frequencies. The percent differences (%D) of amounts in continuing standard mixtures were within the 15.0% QC limits.

The percent difference (%D) of the second source calibration standard were less than or equal to 15.0% for all compounds.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. No total petroleum hydrocarbons as diesel contaminants were found in the method blanks.

No field blanks were identified in this SDG.

#### IV. Accuracy and Precision Data

#### a. Surrogate Recovery

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (%R) were within QC limits.

#### b. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable with the following exceptions:

Sample Compound		Finding	Criteria	ia Flag Ao		
All samples in SDG 06-1934	TPH as diesel	No MS/MSD associated with these samples.	MS/MSD required.	None	Р	

#### c. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### V. Target Compound Identification

All target compound identifications were within validation criteria.

#### VI. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria.

#### VII. System Performance

The system performance was acceptable.

#### VIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### IX. Field Duplicates

No field duplicates were identified in this SDG.

# MCAS El Toro, CTO 084 Total Petroleum Hydrocarbons as Diesel - Data Qualification Summary - SDG 06-1934

SDG	Sample	Compound	Flag	A or P	Reason
06-1934	16_MW04-123 16_MW05-123	TPH as diesel	None	Р	Matrix spike/Matrix spike duplicates

MCAS El Toro, CTO 084

Total Petroleum Hydrocarbons as Diesel - Laboratory Blank Data Qualification Summary - SDG 06-1934

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084

Total Petroleum Hydrocarbons as Diesel - Field Blank Data Qualification Summary - SDG 06-1934

No Sample Data Qualified in this SDG

SDG	#: 14858A8 #: 06-1934 ratory: <u>Applied Physics &amp;</u>			Le	PLETE evel 慥	NESS WOR	KSHEET	Date: <u>4/7</u> 5/0 Page: <u>/</u> of / Reviewer: <u></u>	
METI	HOD: GC TPH as Diesel	(EPA	SW846 Me	ethod 8015	5B)			2nd Reviewer:	
The s		e revi			•	validation area	as. Validation find	dings are noted in attached	
	Validation	Area				7102	Comments		
l.	Technical holding times			Δ		3 28 06			
lla.	Initial calibration			Α		- 1 1			
IIb.	Calibration verification			A	Icv	4 15			
111.	Blanks			Δ					
IVa.	Surrogate recovery			Δ			•		
IVb.	Matrix spike/Matrix spike du	plicate	s	h	Nor	re IP			
IVc.	Laboratory control samples			A	ICS	0			
V.	Target compound identificat	ion		Δ	Not revi	ewed for Level III	validation.		
VI.	Compound Quantitation and	CRQ	Ls	<u> </u>	Not reviewed for Level III validation.				
VII.	System Performance			Δ	Not revi	ewed for Level III	validation.		
VIII.	Overall assessment of data			A			<del></del>		
IX.	Field duplicates		<u>N</u>	SW	P=	742	3+4	-	
<u>x.</u>	Field blanks			N	,				
Note: Validat	A = Acceptable N = Not provided/applicabl SW = See worksheet ed Samples: ** Indicates sam		FB = Fi	eld blank		TB = Trip blank EB = E	iplicate quipment blank		
1	† -16_MPE1-123	11	066148				31		
2	<del></del>	12			22		32		
3	-16_MW01-123	13			23		33		
4	46_MW01-323	14			24		34		
5	16_MW04-123**	15			25		35		
6	16_MW05-123**				26		36		
7	16_MW99-123	17			27		37		
8	1 <del>6_MW11-123</del>	18_			28		38		
9	18_MPE1-123MS	19			29		39		
10	16 <u>MPE1-123MS</u> D	20			30		40		

Notes:

LDC #: 1485BAB #: 06-1934

#### **VALIDATION FINDINGS CHECKLIST**

Page: /of 2 Reviewer: // 2nd Reviewer: ____

Method: GC HPLC				
Validation Area	Yes	No	NA	Findings/Comments
Prochaical Modeling times as the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco				
All technical holding times were met.				
Cooler temperature criteria was met.	-	STORES AND A	255	
Us intellisationations as				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) < 20%?	/			
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?		_	<u>-</u>	
Did the Initial calibration meet the curve fit acceptance criteria?			_	
Were the RT windows properly established?		ANG SOME TO	0.00	
uw goninuing calibration 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communication 2. W. San Francisco Programme Communicati				
What type of continuing calibration calculation was performed?%D or%R				
Was a continuing calibration analyzed daily?	/			
Were all percent differences (%D) ≤ 15%.0 or percent recoveries 85-115%?				
Were all the retention times within the acceptance windows?		30 Add 27 A	भारता <u>त्</u>	THE NAME OF THE RESIDENCE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T
Victory 4.4				
Was a method blank associated with every sample in this SDG?			<u> </u>	
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		_		
<u>VI Surrogales pikės, z</u>				
Were all surrogate %R withIn the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?	200000000000000000000000000000000000000	-000055 Yes		
VIII: Marrix spike/Marrix spike duplicates (*)				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?			7	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
VIII Laboratory control samples 2072				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				

LDC#:_	14828 AB
SDG #:_	06-1934

#### **VALIDATION FINDINGS CHECKLIST**

Page:_	_7of_	2	
Reviewer:			
2nd Reviewer:		_/	`

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
Xerregional Quality Assurance and Quality Gontrol (2012) 1997				A S A LINE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?	#GNPDIRE	22.43 Vision		
Target compounds identifications.				
Were the retention times of reported detects within the RT windows?	en karanak	************		
McCompound quantitation GRGIST 1952 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII System performance 3: 4.4				
System performance was found to be acceptable.				
xili soverali as sessorie devidella, ad troca de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la				
Overall assessment of data was found to be acceptable.				
XIV-Filed Oppicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds idetected in the field duplicates?	/			
xv/sqeldfiglan/s		Y 64.		
Were field blanks identified in this SDG?		/		
Were target compounds detected in the field blanks?				

#### **VALIDATION FINDINGS WORKSHEET** Initial Calibration Calculation Verification

,	Page:_	/of/	
	Reviewer:_	<u>A</u>	
2nd	Reviewer:		

	/		
Method: GC_	<u>/·</u>	_HPLC:	

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C

average CF = sum of the CF/number of standards %RSD = 100 * (S/X)

A = Area of compound, C = Concentration of compound, S = Standard deviation of the CF

X = Mean of the CFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated	
#	Standard ID	Calibration Date	Compound	CF CF CF CF () ^{OO} std) () ^O Cstd)		Average CF (initial)	Average CF (initial)	%RSD	%RSD	
1	dslz-057	12/19/05	drine-	9058, 19	9058,19	10060.9	10060.9	11.851	11.851	
		·						· .		
2					·					
3										
	<u> </u>								1	
4_										
	1									

Comments:	Refer to Initial Calibrat	ion findings worksheet for lis	of qualifications and a	associated samples when	reported results do r	ot agree within 10.00	% of the recalculated
results.				_:	·		

LDC #: 1488A8 SDG #: 06-1934

#### **VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification**

Page:_	of/
Reviewer:	7
2nd Reviewer:	

	_		
METHOD: GC_		_HPLC	

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

		Calibration		Average CF(Ical)/	Reported  CF/Conc.	Recalculated  CF/Conc.	Reported	Recalculated
#	Standard ID	Date	Compound	CCV Conc.	ccv	ccv	,,,,	
1	(489G. uoz	4/3/06	Diesel	1000	993	993		1
		,,,						
		· · · · · · · · · · · · · · · · · · ·						
2								·
3								
4								

Comments:	Refer to 0	Continuing	Calibration	findings we	orksheet f	or list o	f qualificat	ions and	associate	<u>d samples</u>	when re	ported	results do	not ag	ree withir	10.0%	of the
recalculated	results.																

LDC #:_	Tr348	
SDG #:_	02-193	4

#### VALIDATION FIND S WORKSHEET Surrogate Result Verification

Page: of
Reviewer:
2nd reviewer:

METHOD: __GC __ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

5 Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
		-		Reported	Recalculated	
n- octa cosame	not specified	50	44.99]	90	49.98	D
	' V					<u> </u>

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	·

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
·						
						•

LDC#:	14858A8
SDG #:	06-1934

#### **VALIDATION FINDINGS WORKSHEET** Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:of
Reviewer:
2nd Reviewer

 METHOD:	

GC.	HP	LC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC - SC)/SA

Where SSC = Spiked concentration SA = Spike added

SC = Sample concentration

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

LCS = Laboratory Control Sample percent recovery

LCSD = Laboratory Control Sample duplicate percent recovery

LCS/LCSD samples:

	Spi	ike	Sample	Spike :	Sample	. Lo	cs	LCS	D	LCS/L	CSD
Compound	Ade		Conc.	Concei ( w ₇	ntration	Percent I	Recovery	Percent R	ecovery	RP	D
	LCS	LCSD		LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline (8015)											
Diesel (8015)	1	: 1	0	108	103	108	100	103	103	0	ં
Benzene (8021B)											
Methane (RSK-175)									·	·	
2,4-D (8151)											
Dinoseb (8151)											
Naphthalene (8310)											
Anthracene (8310)											
HMX (8330)					·						
2,4,6-Trinitrotoluene (8330)											
·											

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample D	<u>uplicate findings worksheet for list of qualifications and associated samples when reported</u>
results do not agree within 10.0% of the recalculated results.	

J ^<CLCNew.wpd







#### **VALIDATION FINDINGS CHECKLIST**

Page: 20f 27
Reviewer: 77
2nd Reviewer: ____

Validation Area	Yes	No	NA	Findings/Comments
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	-			
xeRegional Quality Assurance and Quality equitors and least the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co				
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?			س	
Xx range conjugated introduction				
Were the retention times of reported detects within the RT windows?				
XIXOOMBOOINI/Aliquidalion/GROUSS 25 55 55 55 55 55 55 55 55 55 55 55 55				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		1		
XII System performance c				
System performance was found to be acceptable.				
XIII soveralijassessment oldala				
Overall assessment of data was found to be acceptable.				
XIV griero duplicares &				
Were field duplicate pairs identified in this SDG?				
Were target compounds idetected in the field duplicates?				
xv4-rieldiblanksee	^			
Were field blanks identified in this SDG?		•		
Were target compounds detected in the field blanks?				

LDC #: 14858A7 SDG #: 06-1934		VAL		DINGS WORK <u>lanks</u>	SHEET			Page:of
METHOD:GC	HPLC				•		Ziiu Re	viewer.
Y N N/A Was a met Y N N/A Was a met Y N N/A Were any of Eevel IV/D Only Y N N/A (Gasoline a	amples associated thod blank perform hod blank perform contaminants foun and aromatics only thod blank analyze	with a given met ned for each matr ned with each ext d in the method I )Was a method	thod blank? ix and whenever raction batch? clanks? If yes, p blank analyzed w tical / extraction l	a sample extract lease see finding vith each 24 hour batch of ≤20 sam	tion procedure w s below. batch?			
Compound	Blank ID				Sample Identification			
	06G1483-MB	01 7	7	-3>	47	5	4	77
PHC as Gasoline	0.01	0. 61/0.05 H	0.02 10.054	0/02/0.054	0.04 /0.054	0.03 10.054	0.03/0.05U	0.054
		•	•	l		/	,	
					· · · · · · · · · · · · · · · · · · ·			
								•
Blank extraction date:	Blank	analysis date:	4/4/06	. Asso	ciated samples:	8		
Compound	Blank ID				Sample Identification	1		
	0 <del>661499=MB</del>	01 8						
PHE a's Gasoline	0.02	0.01/0.05A						
		•						
łł	1		1		ŀ		1	l

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".



LDC #: 1 3A	<b>4</b> 9	VALIDATION FINE	OI S WORKSHEET	Page
SDG #: 06-1	134	Sample Calcul	ation Verification	Reviewe 2nd Reviewe
METHOD:	GC HPLC			
METHOD:	_ GC HPLC			
		culated and verified for all level to detected target compounds w	IV samples? ithin 10% of the reported results?	
Concentration=	(A)(Fv)(Df) (F)(Vs or Ws)(%S/100)	Example:		
(1)	. 1(43 01 443)(700) 100)	Sample ID	Compound Name	

Vs= Initial volume of the sample
Ws= Initial weight of the sample
%S= Percent Solid

#	Sample ID	Compound	Reported Concentrations	Recalculated Results Concentrations ( )	Qualifications
	•				
		:			
omme	nts:				



#### LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

CDM Federal Programs 9444 Farnham Street, Suite 210 San Diego, CA 92123 ATTN: Mr. Mike Higman May 12, 2006

SUBJECT: MCAS El Toro, Data Validation

Dear Mr. Higman,

Enclosed is the final validation report for the fraction listed below. This SDG was received on April 25, 2006. Attachment 1 is a summary of the samples that were reviewed for each analysis.

#### **LDC Project # 14890:**

SDG#

**Fraction** 

E6C270220

**Volatiles** 

The data validation was performed under NFESC Level III and Level IV guidelines. The analyses were validated using the following documents, as applicable to each method:

- NFESC Special Publication SP-2056-ENV, Navy Installation Restoration Chemical Data Quality Manual, Naval Facilities Engineering Command, September 1999
- USEPA, Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999

The data validators did utilize their professional judgement when evaluating the data to achieve the most complete and accurate assessment of the data. The data packages were reviewed according to the above stated validation procedures.

For volatile analyses, no data was qualified as unusable.

In general, the data for all analyses appear usable with the limitations noted in the Data Validation Reports. Data validation flags were noted on the Laboratory Form 1s and included with each validation report.

Sincerely,

Erlinda T. Rauto

**Operations Manager/Senior Chemist** 

											<del></del>					chm						·																	_
			LD	C #	148	390	(C	DM	Fe	ede	ral	Pr	og	ran	ns	Co	rp.	-Sa	n [	Die	go	/ M	ICA	\S	EI 7	Гог	o, l	RP	-16	5)						*			
_DC	SDG#	DATE REC'D	(3) DATE DUE	V( (TO	OA -14A)	)																·																	
Matrix	:: Air/Water/Soil	_	"	A		w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	W	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s
Α	E6C270220	04/25/06	05/16/06	5	0				L												L		_																上
<u> </u>	E6C270220	04/25/06	05/16/06	2	.0:		_						<u> </u>																									H	L
						┢			_			-			<u> </u>	<u> </u>			_				-				·						$\vdash$	$\dashv$			$\vdash$	_	┝
																																							L
					<u> </u>								<u> </u>	<u></u>							<u> </u>												Ш	$\Box$			ш	<u> </u>	丄
			ļ			<u> </u>					_										_																	<u> </u>	丄
					_	<u> </u>															<u> </u>																Ш	L	丄
					L	<u> </u>	L			<u> </u>					<u> </u>						L					Ш							Ш					<u> </u>	上
						<u> </u>							_											L														L	Ļ
						_	L		_														_														Щ	乚	丄
							<u> </u>																L															匚	上
									_					_																								乚	上
																																							L
				<u> </u>																																			
																																		П			П	Γ	П
																				•														$\Box$					
	· · · · · · · · · · · · · · · · · · ·					Ī																	Γ		,									$\sqcap$			$\sqcap$	Γ	
																						Г	Π	Г														Γ	
						T																	П													П		Г	
	·				Г	П																Ι		Π										$\Box$			$\sqcap$	Г	Г
			·		一	Г							Г										T	T													$\Box$	Г	Г
																$\Box$						<u> </u>	厂														$\sqcap$	Г	Т
otal	B/LR			7	0	0	0	0	0	0	0	0	0	0	n	٥١	0	0	0	0	0	n	n	0	0	0	0	0	0	0	0	0	٦		0	0	n	0	7

14890ST,wpd

Shaded cells indicate Level IV validation (all other cells are Level III validation). These sample counts do not include MS/MSD, and DUPs

#### MCAS El Toro Data Validation Reports LDC# 14890

Volatiles



## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro

**Collection Date:** 

March 23, 2006

**LDC Report Date:** 

May 5, 2006

Matrix:

Air

**Parameters:** 

**Volatiles** 

**Validation Level:** 

NFESC Level III & IV

Laboratory:

Severn Trent Laboratories

Sample Delivery Group (SDG): E6C270220

#### Sample Identification

16 VMI-SG-123

16 VMI-SG-223**

16 MPEI-SG-223

16 MPEI-SG-123**

16 MW07-SG-123

16 MW07-SG-223

16 MPEI-SG-323

^{**}Indicates sample underwent NFESC Level IV review

#### Introduction

This data review covers 7 air samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method TO-14A for Volatiles.

This review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999); the following subsections correlate to the above guidelines.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XVI.

Samples indicated by a double asterisk on the front cover underwent a NFESC Level IV review. A NFESC Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

#### II. GC/MS Instrument Performance Check

Instrument performance was checked at 24 hour intervals.

All ion abundance requirements were met.

#### III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%RSD	Associated Samples	Flag	A or P
10/6/05	Chloromethane	30.403	All samples in SDG E6C270220	J (all detects) UJ (all non-detects)	P
	Vinyl acetate	34.485		J (all detects) UJ (all non-detects)	

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

#### IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0%.

All of the continuing calibration RRF values were within validation criteria.

#### V. Blanks

Method blank analyses were performed at the required frequency. No volatile contaminants were found in the method blanks.

No field blanks were identified in this SDG.

#### VI. Surrogate Spikes

Surrogates were not required by the method.

#### VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) analyses were not required by the method.

#### VIII. Laboratory Control Samples (LCS)

Laboratory control samples were analyzed at the required frequency. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

#### IX. Regional Quality Assurance and Quality Control

Not applicable.

#### X. Internal Standards

All internal standard areas and retention times were within QC limits.

#### XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a NFESC Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

#### XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a NFESC Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

#### XIII. Tentatively Identified Compounds (TICs)

Tentatively identified compounds were not reported by the laboratory.

#### XIV. System Performance

The system performance was within validation criteria for samples on which a NFESC Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

#### XV. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

#### XVI. Field Duplicates

Samples 16_MPEI-SG-123** and 16_MPEI-SG-323 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentra	tion (ppbv)	
Compound	16_MPEI-SG-123**	16_MPEI-SG-323	RPD
1,1,2-Trichloro-1,2,2-trifluoroethane	55	90	48
Acetone	120U	260	200
cis-1,2-Dichloroethene	100	150	40
Trichloroethene	4200	5400	25
Xylenes, total	25U	42	200

#### MCAS El Toro Volatiles - Data Qualification Summary - SDG E6C270220

SDG	Sample	Compound	Flag	A or P	Reason
E6C270220	16_VMI-SG-123 16_VMI-SG-223** 16_MPEI-SG-223 16_MPEI-SG-123** 16_MW07-SG-123 16_MW07-SG-223 16_MPEI-SG-323	Chloromethane Vinyl acetate	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	Р	initial calibration (%RSD)

MCAS El Toro Volatiles - Laboratory Blank Data Qualification Summary - SDG E6C270220

No Sample Data Qualified in this SDG

MCAS El Toro Volatiles - Field Blank Data Qualification Summary - SDG E6C270220

No Sample Data Qualified in this SDG

SDG	#: <u>14890A48</u> 6 #: <u>E6C270220</u> pratory: <u>Severn Trent Labor</u>	_			PLETENES evel III/IV	S WORKSHEET	Γ	Date: 5/04/0 Page: 10f_ Reviewer: 3/0 2nd Reviewer: 0
MET	THOD: GC/MS Volatiles (El	PA M	ethod TO-1	4A)				
	samples listed below were lation findings worksheets.		wed for eac	ch of the fo	ollowing valid	ation areas. Validat	ion findi	ngs are noted in attached
	Validation	Area.				Comi	nents	
1.				A	Sampling dates	s: 3/23/66		
11.	. GC/MS Instrument performa	ince ch	eck	A	24 hr	3		,
_111	Initial calibration			CW				
ΙV	Continuing calibration	/ICV		A				
V	. Blanks			_ A				
VI	i. Surrogate spikes			N				
VI	I. Matrix spike/Matrix spike dup	plicates	,	N				
VII	II. Laboratory control samples			A	us/p			
İX	K. Regional Quality Assurance	and Q	uality Control	N	]			
х	. Internal standards			Α				
XI	Target compound identificati	ion		A	Not reviewed	for Level III validation.		
XI	I. Compound quantitation/CRC	QLs		A	Not reviewed	for Level III validation.		
XII	II. Tentitatively identified compo	ounds (	(TICs)	N	Not reviewed	for Level III validation.		
Χľ	V. System performance			Α	Not reviewed	for Level III validation.		
χ	V. Overall assessment of data			A				
xv	/I. Field duplicates			SW)	<i>b</i> = 4.	7		
xv	/II. Field blanks			N				
Note:	: A = Acceptable N = Not provided/applicable SW = See worksheet lated Samples: ** Indicates samp		R = Rins FB = Fie	ield blank		D = Duplicate TB = Trip blank EB = Equipment bla	ank	
<del>+</del>	16_VMI-SG-123 、	11	609632	27 MB	21		31	
1 2	16_VMI-SG-223**	12		<u>*1 "10,                                  </u>	22	<del></del>	32	
3	16_MPEI-SG-223	13			23		33	
4	16_MPEI-SG-123** D	14			24		34	<del></del>
5	16_MW07-SG-123	15			25		35	
٦	16_MW07-SG-223	16			26		36	<del></del>

30_

16_MPEI-SG-323

LDC #: 14890 A48 SDG #: 56C 270270

#### **VALIDATION FINDINGS CHECKLIST**

Page: of γ Reviewer: Λ 2nd Reviewer:

Method: Volatiles (EPA Method TO-14/TO-14A)

Validation Area	Yes	No	NA	Findings/Comments
ti Technical holding times				
All technical holding times were met.	/			
Canister pressure criteria was met.	]_			
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
III Initial collibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?		<u> </u>		
Were all percent relative standard deviations (%RSD) $\leq$ 30% and relative response factors (RRF) $\geq$ 0.05?				
D'. Continuing salibietion				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) $\leq$ 30% and relative response factors (RRF) $\geq$ 0.05?				
V. Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Surogate spikes				
Were all surrogate %R within QC limits?			/	NR
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
YII Mednix spike/Metric spike duplicated	<u> </u>			
Was a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			_	
VIII: Laboratory control samples				
Was an LCS analyzed for this SDG?	_			
Was an LCS analyzed per analytical batch?	4			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC #: 1+890 A48 SDG #: 56 C 276270

#### **VALIDATION FINDINGS CHECKLIST**

Page: Vof Y
Reviewer: JVL
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
	1 103	1 110	IIA	/ rindings/Comments
Regional Guality Assurance and Guality Control  Were performance evaluation (PE) samples performed?	T		1	
Were the performance evaluation (PE) samples within the acceptance limits?	-	-	-	
X Internal standards			1	
Were internal standard area counts within +/-40% from the associated calibration	T			
standard?	/			
Were retention times within +/- 30.0 seconds from the associated calibration standard?	/			
XI: Target compound identification				
Were relative retention times (RRT's) within $\pm$ 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?				
XII: Compound quantitation/CRGLs				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Tentatively identified compounds (TICs)				
Were the major lons (> 10 percent relative intensity) in the reference spectrum evaluated in sample spectrum?			1	
Were relative intensities of the major ions within $\pm$ 20% between the sample and the reference spectra?			1	
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?				
KIV. System performance				
System performance was found to be acceptable.	/		T	
ए. Overall assessment of data:		·		
Overall assessment of data was found to be acceptable.	A		T	
VI. Field duplicates	- 1			
rield duplicate pairs were identified in this SDG.	$\supset$	T	T	
arget compounds were detected in the field duplicates.	+	-	$\dashv$	
	<u> </u>			
VIII. Field blanks	<del></del>	<del>-</del>		
ield blanks were identified in this SDG.		4	بـــــــــــــــــــــــــــــــــــــ	
arget compounds were detected in the field blanks.		<u>_L</u>	1	

#### TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method TO-14/TO-14A)

A. Chloromethane*	S. Trichloroethene	KK. Trichloroftuoromethane	CCC. tert-Butylbenzene	UUU, Benzyl chloride
B. Bromomethane	T. Dibromochioromethane	LL Methyl-tert-butyl ether	DDD. 1,2,4-Trimethylbenzene	VVV. 4-Ethyttoluene
C. Vinyl choride**	U. 1,1,2-Trichloroethane	MM. 1,2-Dibromo-3-chloropropane	EEE, sec-Butylbenzene	WWW. Ethanol
D. Chloroethane	V. Benzene	NN. Diethyl ether	FFF. 1,3-Dichlorobenzene	XXX. Ethyl ether
E. Methylene chloride	W. trans-1,3-Dichloropropene	OO. 2,2-Dichioropropane	GGG, p-isopropyltotuene	YYY, tert-Butanol
F. Acetone	X. Bromoform*	PP. Bromochloromethane	HHH. 1,4-Dichlorobenzene	ZZZ. tert-Butyl alcohol
G. Carbon disulfide	Y. 4-Methyl-2-pentanone	QQ. 1,1-Dichloropropene	III. n-Butyibenzene	AAAA. Ethyl tert-butyl ether
H. 1,1-Dichloroethene**	Z. 2-Hexanone	RR. Dibromomethane	JJJ. 1,2-Dichlorobenzene	BBBB, tort-Amyl methyl ether
I. 1,1-Dichloroethane*	AA. Tetrachioroethene	SS. 1,3-Dichioropropane	KKK. 1,2,4-Trichlorobenzene	CCCC;1-Chlorohexane
J. 1,2-Dichloroethene, total	BB. 1,1,2,2-Tetrachloroethane*	TT. 1,2-Dibromoethane	LLL Hexachiorobutadiene	DDDD. isopropyi alcohol
K. Chloroform**	CC. Toluene**	UU. 1,1,1,2-Tetrachloroethane	MMM. Naphthalene	EEEE. Acetonitrile
L. 1,2-Dichloroethane	DD. Chlorobenzene*	W. Isopropylbenzene	NNN. 1,2,3-Trichlorobenzene	FFFF. Acrolein
M. 2-Butanone	EE. Ethylbenzene**	WW. Bromobenzene	OOO. 1,3,5-Trichlorobenzene	GGGG. Acrylonitrile
N. 1,1,1-Trichloroethane	FF. Styrene	XX. 1,2,3-Trichloropropane	PPP. trans-1,2-Dichloroethene	HHHH. 1,4-Dioxane
O. Carbon tetrachloride	GG. Xylenes, total	YY. n-Propylbenzene	QQQ. cis-1,2-Dichloroethene	IIII. Isobutyi alcohol
P. Bromodichloromethane	HH. Vinyl acetate	ZZ. 2-Chlorotoluene	RRR. m,p-Xylenes	JJJJ. Methacrylonitrile
Q. 1,2-Dichloropropane**	II. 2-Chloroethylvinyl ether	AAA. 1,3,5-Trimethylbenzene	SSS, o-Xylene	KKKK. Propionitrile
R. cis-1,3-Dichloropropene	JJ, Dichlorodiffuoromethane_	BBB. 4-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	ш. ;

^{* =} System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.

## **Initial Calibration**

	Page	_of
	Reviewer:	_ DZ
2nd	Reviewer:	4

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Did the laboratory perform a 5 point calibration prior to sample analysis?

Y(N)N/A Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) ≥ 0.05?

#	Date	Standard ID	Compound	Finding %RSD (Limit: ≤30.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	10/06/08	ICAL	A	30. 403		All + Blk	T/45/P
			HH	3ch 485			J/UJ/F
					·		
							·
							:
							-
		·	<u> </u>				1
						<u> </u>	<u> </u>
L							·
			1		·		
				<u> </u>			
L				<u>                                     </u>			·

LDC #: 14 8 90 14 8 SDG #: 56 C 276 220

## VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

Y	N	N/A
(又	N	N/A

Were field duplicate pairs identified in this SDG?
Were target compounds detected in the field duplicate pairs?

	Concentration	0	G 0	
Compound	4	7	(£26%)	RPD Parent
<b>+++</b>	55	90	48	JAGE/
F	120 U	260	200	J/W / A
QQQ	100	150	10	J petc/A
S	4200	5400	25	11
GG	25 N	42	200	FastA
	Concentration (	· · · · · · · · · · · · · · · · · · ·		
Compound	Concentration	— :	· .	RPD .
	Concentration (	)		
Compound			ı	RPD
	Concentration (		=	
Compound	Concentration (	)	F	RPD
Compound	Concentration (	)	F	IPD

LDC	#:	14890	, 1	448	
SDG	#:	EG	C	270	220

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

		$\overline{}$
	Page:_	lof
	Reviewer:_	0%
2nd	Reviewer:	d
	* "	

METHOD: GC/MS VOA (EPA TO-14/TO-14A)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF =  $(A_n)(C_n)/(A_n)(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_{\kappa}$  = Area of compound,

A_k = Area of associated internal standard

 $C_x$  = Concentration of compound,

C_k = Concentration of internal standard

S = Standard deviation of the RRFs

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF ( 50 std)	RRF (50 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	10/04/05	Methylene chloride (1st internal standard)	0.73187	0.73987	0.7769)	0-77691	14.972	14.972
			Trichlorethene (2nd internal standard)	0. 52676	0.52676	0.53291	0.53291	19.041	19.041
			Toluene (3rd internal standard)	1.24232	1. 24 237	1.17985	1. 17985	15.318	15.398
2			Methylene chloride (1st internal standard)						
	In		Trichiorethene (2nd internal standard)						
			Toluene (3rd internal standard)						
3			Methylene chloride (1st internal standard)				·		
			Trichlorethene (2nd internal standard)						
			Toluene (3rd internal standard)						
4			Methylene chloride (1st internal standard)						
	,	·	Trichlorethene (2nd internal standard)						
			Toluene (3rd internal standard)						

			 <u> </u>	TITOTT TOPOTTON	I COUNT GC	not agree v	W.C. 1111 1 0.	070 01 1116
recalculated results.								

LDC#: 14890 A48 SDG#: E6 C 270220

## VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

	_		
	Page:_	<u>l</u> of	
	Reviewer:	W6	
2nd	Reviewer:	d	

METHOD: GC/MS VOA (EPA TO-15)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_h)/(A_h)(C_x)$ 

RRF = continuing calibration RRF

A_k = Area of associated internal standard

A_x = Area of compound, C_x = Concentration of compound,

C = Concentration of internal standard

			·		Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	CC 04033	+/03/06	. Methylene chloride (1st internal standard)	0.77691	0.74247	0.74267	4. 4	4.4
		, ,	Trichlorethene (2nd internal standard)	0.5329)	0.49607	0-49607	6.9	6.9
			BB Tolling (3rd internal standard)	1. 17 985	1.26465	1.26465	7.2	7.7
2			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd Internal standard)					
			Toluene (3rd internal standard)	·				
3			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd Internal standard)					
<u></u>			Toluene (3rd internal standard)					
4			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list	of qualifications and	associated samples v	when reported resi	ults do not agree withi	n 10.0% of
the recalculated results.					
					<del></del>

LDC#: 14890 A48

#### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

•		1
Page:_		pf
Reviewer:_	、	W
2nd reviewer:	Ø	

METHOD: GC/MS VOA (EPA Method TO-15)

YN NA YN NA

%S

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

Sample I.D. # 4

Concentration = (A,)(I,)(DF) (A_{In})(RRF)(V_o)(%S)

A_x = Area of the characteristic ion (EICP) for the compound to be measured

A_{In} = Area of the characteristic ion (EICP) for the specific internal standard

I_x = Amount of internal standard added in nanograms (ng)

RRF = Relative response factor of the calibration standard.

V_o = Volume or weight of sample pruged in milliliters (ml) or grams (g).

Df = Dilution factor.

Conc. = (4/38363) ( 50 ) ( 12.39 ) ( 1696143) ( 0.5329) ( )

= 4207.0 ppb V/V

Percent solids, applicable to soils and solid matrices

 $Vg/L = \frac{(4207)(131.35)}{(100)(24.45)} = 22.6 2 23 ug/l$ 

	only.		3,7	` (1e00) (24.	45)	<i>7.</i> 2				
#	Sample ID	Compound		Reported Concentration	Calculated Concentration	Qualification				
						·				
	·									
			<del></del>							
						<u> </u>				
	· · · · · · · · · · · · · · · · · · ·									
	·				· ·					
				· · · · · · · · · · · · · · · · · · ·						
<u> </u>		·								



#### LABORATORY DATA CONSULTANTS, INC.

7750 El Camino Real, Suite 2L Carlsbad, CA 92009 Phone: 760/634-0437 Fax: 760/634-0439

May 24, 2006

CDM Federal

9444 Farnham Street, Suite 210

San Diego, CA 92123

ATTN: Mr. Michael Higman

SUBJECT: MCAS El Toro CTO 084, Data Validation

Dear Mr. Higman,

Enclosed is the final validation report and Excel qualification sheet for the fractions listed below. This SDG were received on May 18th, 2006.

#### LDC project# 14993:

SDG#

**Fraction** 

158637, 159123

Gross alpha & beta (Method EPA 900.0)

The following deliverables are submitted under this report:

Attachment I Sample ID Cross Reference and Data Review Level

Attachment III CDM Database Qualification Summary

Enclosure I EPA Level III ADR Outliers (including manual review outliers)

Enclosure II
 EPA Level IV DVR (manual review)

The data validation was performed in accordance to the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004. Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. The following items were evaluated during the review:

- Holding Times
- Sample Preservation
- Cooler Temperatures
- Initial Calibration (Manual Review)
- Continuing Calibration (Manual Review)
- Blanks
- Matrix Spike/Matrix Spike Duplicates
- Laboratory Control Samples
- Detection and Quantitation Limits
- Field QC Samples



Please feel free to contact us if you have any questions.

Sincerely,

Erlinda T. Rauto Operations Manager/Senior Chemist

## Attachment I

## Sample ID Cross Reference and Data Review Level

#### **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
15-Mar-2006	03_DGMW64A-123	158637013	N	Gen Prep	E900	III
15-Mar-2006	03_DGMW65XA-123	158637008	N	Gen Prep	E900	III
15-Mar-2006	03_DGMW65XA-323	158637009	FD	Gen Prep	E900	ш
15-Mar-2006	05_DBMW41A-123	158637012	N	Gen Prep	E900	111
16-Mar-2006	05_DGMW68A-123DUP	1201061683	DUP	Gen Prep	E900	111
16-Mar-2006	05_DGMW68A-123MS	1201061684	MS	Gen Prep	E900	Ш
16-Mar-2006	05_DGMW68A-123MSD	1201061690	MSD	Gen Prep	E900	111
16-Mar-2006	05_DGMW68A-123	158637007	N	Gen Prep	E900	iV
16-Mar-2006	04_DGMW66A-123	158637004	N	Gen Prep	E900	111
16-Mar-2006	02_NEW8A-123	158637010	N	Gen Prep	E900	-111
16-Mar-2006	04_UGMW63-123	158637011	N	Gen Prep	E900	111
16-Mar-2006	02NEW7-123	158637005	N	Gen Prep	E900	. IV
16-Mar-2006	02NEW7-323	158637006	, FD	<b>Gen Prep</b>	E900	III
17-Mar-2006	05NEW1-123	158637002	N	Gen Prep	E900	111
17-Mar-2006	05_DGMW67A-123DUP	1201061671	DUP	Gen Prep	E900	111
17-Mar-2006	05_DGMW67A-123MS	1201061672	MS	Gen Prep	E900	111
17-Mar-2006	05_DGMW67A-123MSD	1201061681	MSD	Gen Prep	E900	111
17-Mar-2006	05_DGMW67A-123	158637001	N	Gen Prep	E900	IV
17-Mar-2006	04_DBMW40-123	158637003	N	Gen Prep	E900	IV
21-Mar-2006	02_DGMW59-123DUP	1201066825	DUP	Gen Prep	E900	111
21-Mar-2006	02_DGMW59-123MS	1201066826	MS	<b>Gen Prep</b>	E900	UI
21-Mar-2006	02_DGMW59-123MSD	1201066828	MSD	Gen Prep	E900	111
21-Mar-2006	02_DGMW59-123	159123002	N	Geп Ргер	E900	Ш.
21-Mar-2006	02_NEW11-123DUP	1201066836	DUP	Gen Prep	E900	m
21-Mar-2006	02_NEW11-123MS	1201066837	MS	Gen Prep	E900	186
21-Mar-2006	02_NEW11-123MSD	1201066839	MSD	Gen Prep	E900	1!!





#### **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
21-Mar-2006	02_NEW11-123	159123001	N	Gеп Ргер	E900	III
22-Mar-2006	02NEW15-123	159123004	N	Gen Prep	E900	III
22-Mar-2006	02NEW16-123	159123005	. N	Gen Prep	E900	III
22-Mar-2006	02_NEW2-123	159123003	N .	Gen Prep	E900	111

## Attachment II

## **Overall Data Qualification Summary**

#### **Overall Qualified Results**

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 158637						·				
E900	02_NEW8A-123	AQ	N .	ALPHA	3.00	25.4	5.93	J	pCi/L	
E900	02NEW7-123	AQ	N	ALPHA	3.00	28.2	2.80	J	pCi/L	
E900	02NEW7-323	ρA	N	ALPHA	3.00	26.8	2.90	J	pCi/L	
E900	03_DGMW64A-123	AQ	N	ALPHA	3.00	21.5	2.87	J	pCi/L	
E900	03_DGMW65XA-123	AQ	N	ALPHA	3.00	31.2	9.29	J	pCl/L	
E900	03_DGMW65XA-323	AQ	FD	ALPHA	3.00	23.9	3.78	J	pCi/L	
E900	04_DBMW40-123	AQ	N	ALPHA	3.00	16.7	2.53	J	pCi/L	
E900	04_DGMW66A-123	AQ	N	ALPHA	3.00	31.7	3.13	J	pCi/L	
E900	04_UGMW63-123	AQ	N	ALPHA	3.00	17.1	6.28	J	pCi/L	
E900	05_DBMW41A-123	AQ	N	ALPHA	3.00	15.6	4.73	J	pCi/L	
E900	05_DGMW67A-123	AQ	N	ALPHA	3.00	10.4	1.99	J	pCi/L	
E900	05_DGMW68A-123	AQ	N	ALPHA	3.00	26.4	6.63	J	pCi/L	
E900	05NEW1-123	, AQ	N	ALPHA	3.00	12.5	2.10	J	pCi/L	
SDG: 159123										
E900	02_NEW11-123	AQ	N	ALPHA	3.00	5.31	3.12	j	pCi/L	

N = Normal Sample TB = Trip Blank FD = Field Duplicate FB = Field Blank

## Attachment III

## **CDM Database Qualification Summary**

## CDM Federal Programs Corporation

#### Reason for Qualified Results

SDG Nos.: 158637,159123

Project No # : 14993

Sample Del Group ( SDG )	Sample ID	Test Method	CAS No.		Non Detected Qualifier Analyte Name	Reason
158637	02_NEW8A-123	E900	12587461	J	ALPHA	Matrix spike recovery
158637	02NEW7-123	E900	12587461	J	ALPHA	Matrix spike recovery
158637	02NEW7-323	E900	12587461	J	ALPHA	Matrix spike recovery
158637	03_DGMW64A-123	E900	12587461	J	ALPHA	Matrix spike recovery
158637	03_DGMW65XA-123	E900	12587461	J	ALPHA	Matrix spike recovery
158637	03_DGMW65XA-323	E900	12587461	J	ALPHA	Matrix spike recovery
158637	04_DBMW40-123	E900	12587461	J	ALPHA	Matrix spike recovery
158637	04_DGMW66A-123	E900	12587461	J	ALPHA	Matrix spike recovery
158637	04_UGMW63-123	E900	12587461	·J	ALPHA	Matrix spike recovery
158637	05_DBMW41A-123	E900	12587461	J	ALPHA	Matrix spike recovery
158637	05_DGMW67A-123	E900	12587461	J	ALPHA	Matrix spike recovery
158637	05_DGMW68A-123	E900	12587461	J	ALPHA	Matrix spike recovery
159123	02_NEW11-123	E900	12587461	J	ALPHA	Matrix spike recovery

## Enclosure I

## EPA Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

SDG 158637

(Note: the following were based on manual validation findings)

#### QC Outlier Report: Field Duplicates (Non-qualified Outliers)

Lab Report Batch: 158637

Lab ID: GEL

			F	Field Sample				Field Sample Duplicate					
Analysis Method Ma	Matrix	Analyte Name	Client Sample ID	Ana Type	Result	Lab Qualifier	Client Sample Duplicate ID	Ana Type	Result	Lab Qualifier	RPD Dup* (%)	RPD Criteria (%)	Result Units
E900	AQ	ALPHA	03_DGMW65XA-1	RES	31.2		03_DGMW65XA	3 RES	23.9		26.5	20	pCi/L

*Note: Outlier report also includes analytes detected in one sample but not in the related sample, i.e., analyte was detected in the field sample but not in the field duplicate sample, or vice versa. In this case, RPD value assigned to the field duplicate sample is 200.

Project Number and Name:

6218-999-002-AL TO12 - MCAS El Toro

# Quality Control Outlier Reports

SDG 159123

(Note: the following were based on manual validation findings)

SDG	#: <u>14993B22</u> #: <u>159123</u> atory: <u>General Engineer</u>	Level III						Date: 5- 23-0 Page: 1 of 1 Reviewer: MG 2nd Reviewer: الس	
The s	HOD: Gross Alpha & Bet amples listed below were tion findings worksheets	e revi			·	lidatio	n areas. Vali	dation find	lings are noted in attached
	Validation	Area	···········		<u> </u>	· · · ·	Co	mments	
I.	Technical holding times			мA	Sampling da	tes:	3-21-06		4 3-22-06
lla.	Initial calibration			A				- 1	
IIb.	Calibration verification			A					
III.	Blanks			MA					
IVa.	Matrix Spike/(Matrix Spike)	Duplic	ates	SW	MS/MS	D/D	UP ( Duy	error	rat: 0 < 1.42: Noval)
IVb.	Laboratory control samples			A	LCS				
V.	Minimum dectectable activi	ty (MD	A)	N					
VI.	Sample result verification			N,					
VII.	Overall assessment of data			7					
VIII.	Field duplicates			7	(None	)	· · · · · · · · · · · · · · · · · · ·		
_IX_	Field blanks			7					
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:	÷	R = Rins	o compound sate eld blank	s detected	7	O = Duplicate ΓB = Trip blank EB = Equipment	blank	(
	911 water								
1	02_NEW11-123	11	02_DGMW59	-123DUP	21			31	
2 1	02_DGMW59-123	12			22			32	
3 1	02_NEW2-123	13			23		÷ .	33	
4	02NEW15-123	14			24			34	
5	02NEW16-123	15			25			35	
6	02_NEW11-123MS	16			26		~~~~	36	
7	02_NEW11-123MSD	17	PBWI		27			37	
8	02_NEW11-123DUP	18			28			38	
9 /	02_DGMW59-123MS	19			29			39	
10 1	02_DGMW59-123MSD	20			30			40	

LDC	#:_	-14993B2	2
000			

### **VALIDATION FINDINGS WORKSHEET Matrix Spike Analysis**

	Page:_	1 of 1
	Reviewer:	MG
2nd	Reviewer:	Mn

METHOD: Radiochemistry (Method:	900.0	
---------------------------------	-------	--

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed at the required frequency in this SDG?

Were matrix spike percent recoveries (%R) within the control limits of 75-185? If the sample concentration exceeded the spike concentration by Y (N) N/A a factor of 4 or more, no action was taken.

#### LEVEL IV ONLY:

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations. Y N N/A

#	Matrix Spike ID	Matrix	Analyte	ns %	R MSD	Associated Samples	Qualifications
	6/7	water	Gross Alpha	55 (75-125)	68 (75-125		J/UJ/A
<b> </b>							
) <del></del> -							
					1		
<u> </u>				<u> </u>			
<b></b>							
-				<del>                                     </del>	<u></u>		
		<u> </u>		ļ			<u> </u>
<b> </b>		<del></del>		<u> </u>			
H-			ļ	<del> </del>			
		<del> </del>	<del> </del>	<del> </del>			
<b> </b>		ļ		<del> </del>	·		<u> </u>
-			<del> </del>	-			
			<del>                                     </del>	<del> </del>			

### Enclosure II

# **EPA Level IV Validation Reports**

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

MCAS El Toro, CTO 084

**Collection Date:** 

March 15 through March 17, 2006

**LDC Report Date:** 

May 24, 2006

Matrix:

Water

**Parameters:** 

Gross Alpha and Beta

Validation Level:

NFESC Level III & IV

Laboratory:

General Engineering Laboratories, LLC.

Sample Delivery Group (SDG): 158637

### Sample Identification

05 DGMW67A-123**

04 DBMW40-123**

02NEW7-123**

05 DGMW68A-123**

05 DGMW67A-123MS

05 DGMW67A-123MSD

05 DGMW68A-123MS

05_DGMW68A-123MSD

05 DGMW68A-123DUP

05 DGMW67A-123DUP

^{**}Indicates sample underwent EPA Level IV review

#### Introduction

This data review covers 10 water samples listed on the cover sheet. The analyses were per EPA SW 846 Method 900.0 for Gross Alpha and Beta Radioactivity.

The review follows a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (October 2004) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section III.

Field duplicates are summarized in Section VIII.

Samples indicated by a double asterisk on the front cover underwent a NFESC Level IV review. A NFESC Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. Calibration

#### a. Initial Calibration

All criteria for the initial calibration were met.

Detector efficiency was determined and a self-absorption curve was generated for each radionuclide of interest.

#### b. Continuing Calibration

Calibration verification and background determination were performed at the required frequencies. Results were within laboratory control limits.

#### III. Blanks

Method blanks were reviewed for each matrix as applicable. Blank results contained less than the minimum detectable activity (MDA).

No field blanks were identified in this SDG.

#### IV. Accuracy and Precision Data

#### a. Matrix Spike/(Matrix Spike) Duplicate

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
05_DGMW67A-123MS/MSD (05_DGMW67A-123** 04_DBMW40-123** 02NEW7-123**)	Gross alpha	72 (75-125)	-	•	J (all detects) UJ (all non-detects)	А
05_DGMW68A-123MS/MSD (05_DGMW68A-123**)	Gross alpha	59 (75-125)	59 (75-125)	•	J (all detects) UJ (all non-detects)	Α

### b. Laboratory Control Samples

Laboratory control samples were reviewed for each matrix as applicable. Percent recoveries (%R) were within QC limits.

### V. Minimum Detectable Activity (MDA)

All minimum detectable activities met required detection limits.

### VI. Sample Result Verification

All sample result verifications were acceptable for samples on which a NFESC Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

#### VII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

### **VIII. Field Duplicates**

Samples 02NEW7-123** and 02NEW7-323 were identified as field duplicates. No volatiles were detected in any of the samples with the following exceptions:

	Concentral	tion (pCi/L)			
Analyte	02NEW7-123**	02NEW7-323	RPD (Limits)	Flag	A or P
Gross alpha	28.2	26.8	5 (≤20)	•	<u>-</u>
Gross beta	10.3	10.2	1 (≤20)	•	-

### MCAS El Toro, CTO 084 Gross Alpha and Beta - Data Qualification Summary - SDG 158637

SDG	Sample	Analyte	Flag	A or P	Reason
158637	05_DGMW67A-123** 04_DBMW40-123** 02NEW7-123** 05_DGMW68A-123**	Gross alpha	J (all detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicates (%R)

MCAS El Toro, CTO 084 Gross Alpha and Beta - Laboratory Blank Data Qualification Summary - SDG 158637

No Sample Data Qualified in this SDG

MCAS El Toro, CTO 084 Gross Alpha and Beta - Field Blank Data Qualification Summary - SDG 158637

No Sample Data Qualified in this SDG

SDG#	t: 14993A22 #: 158637 atory: <u>General Engineer</u>		ALIDATION COMPLETENESS WORKSHEET  Level III/IV  aboratories, LLC						Re 2nd Re	Date:_ Page:_I eviewer:_ eviewer:_	5-23-01 Lof_1 MG (		
The sa	IOD: Gross Alpha & Bet	e revi			•	ıg va	ılidation areas. Va	alidation	findin	gs are no	oted in at	tached	
valida	tion findings worksheets	•			1	<del></del>							
	<u>Validation</u>	Area			<u> </u>			Comme					
1.	Technical holding times			A	Sampli	ing d	ates: 3-15-06	+41	ough	3-17	-06		
ila.	Initial calibration			A	ļ						<del></del>		
Ilb.	Calibration verification			_A	ļ			:					
_ 111.	Blanks			_A_	ļ						·	ON	
IVa.	Matrix Spike/(Matrix Spike)	Duplic	ates	SW	1		p/Dup (	Dur 6	rov	ratio	< 1.42	Qual	
IVb.	Laboratory control samples			_A	1	cs							
V	Minimum dectectable activi	y (MD	A)	A	<u> </u>		·						
VI.	Sample result verification			A	Not reviewed for Level III validation.								
VII.	Overall assessment of data	ent of data											
VIII.	Field duplicates			SW	D= 5+6 ,-D=8+9								
ix	Field blanks			N	Щ.								
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	•	R = Rins	o compound sate eld blank	ls detect	ed	D = Duplicate TB = Trip blar EB = Equipme	ık				(	
	d Samples: ** Indicates sam GIL W4+€✓	ple und	derwent Level I	V validation					<u></u>			···	
1 (	05_DGMW67A-123**	11	04_UGMW63	123	2	21	PBWI	3	1				
2	95NEW1-123	12	05_DGMW41	A-123	2	22 2	PBW2	3	2				
3 1 (	04_DBMW40-123**	13_	83_DGMW64	<del>A-12</del> 3		23		3	3				
4 1	04_DGMW66A-123	14	05_DGMW67	A-123MS	2	24		3	4				
5 1 (	02NEW7-123**	15	05_DGMW67	A-123MSD	2	25		3	5				
6 1	92NEW7-323	16	05_DGMW68	A-123MS	2	26	•	3	6				
	05_DGMW68A-123**	17	05_DGMW68	-		27			7				
	93_DGMW65XA-128	18	05_DGMW68			8		•	8				
	03_DGMW/65XA-323	19	05_ DGMW6		<b>&gt;</b> 2	9		3		,			
	22_NEW8A-123	20				10			0				
Votes:													

LDC #:_	14993A22
SDG #:	158637

### **VALIDATION FINDINGS CHECKLIST**

Page: 1 of 2 Reviewer: MG 2nd Reviewer: My

Method:Radiochemistry(EPA Method 900.0

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times	1.3	1	1	
All technical holding times were met.	1/			
II. Calibration	1			
Were all instruments and detectors calibration as required?	1			•
Were NIST traceable standards used for all calibrations?	1.1			
Was the check source identified by activity and radionuclide?	/			
Were check sources including background counts analyzed at the requiried frequency and within laboratory control limits?	1			
III. Blanks				
Were blank analyses performed as required?	/			•
Were any activities detected in the blanks greater than the minimum detectable activity (MDA)? If yes, please see the Blanks validation completeness worksheet.		/		
IV. Matrix spikes and Duplicates				
Were a matrix spike (MS) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	/			
Were the MS percent recoveries (%R) within the QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	•	/		
Was a duplicate sample anayized at the required frequency of 5% in this SDG?	1			
Were all duplicate sample duplicate error rations (DER) ≤1.42?.	./			·
V. Laboratory control samples				
Was an LCS analyzed per analytical batch?	/		]	·
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the 75-125%	/			
VI. Sample Chemical/Carrier Recovery				
Was a tracer/carrier added to each sample?		/		
Were tracer/carrier recoveries withIn the QC limits?				
/ii. Regional Quality Assurance and Quality Control				
Nere performance evaluation (PE) samples performed?		<u>/</u>	_	·
Were the performance evaluation (PE) samples within the acceptance limits?			<u> </u>	
/III, Sample Result Verification	—т			
Vere activities adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Vere the Minimum Detectable Activities (MDA) < RL?	/			

### **VALIDATION FINDINGS CHECKLIST**

Page: 2 of 2
Reviewer: 46
2nd Reviewer: 4

Validation Area	Yes	No	NA	Findings/Comments
IX Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			·
X: Field duplicates				
Field duplicate pairs were identified in this SDG.	1			ı
Target analytes were detected in the field duplicates.	1			
XI: Field blanks				
Field blanks were identified in this SDG.		<b>✓</b>		
Target analytes were detected in the field blanks.				

	93AƏ2 637	<b>\</b>	/ALIDATION FINDINGS WO Matrix Spike Analys		Page: 1 of 1 Reviewer: MG
METHOD: Rad	iochemistry (Method:	900.0			2nd Reviewer: My
Please see qua YN N/A YN N/A	Was a matrix spike ana	lyzed at the required ent recoveries (%R)			tration exceeded the spike concentration by
LEVEL IV ONL	= = =	ilts acceptable? See	Level IV Recalculation Worksheet	t for recalculations.	

#	Matrix Spike ID	Matrix	Analyte	MS %F	azm	Associated Samples	Qualifications
	14/15	water	Gross Alpha	72 (75-125)		1, 3, 5	JUJ/A
<u> </u>		<del>  </del>	<u> </u>				
2	16/17	<del>                                     </del>	k	59 ( 1	59 (75-125)	7	<u> </u>
		·					
-							
_		<b></b>	<u> </u>				
		<del> </del>	<del>  - : </del>				
	·		<del> </del>	<del> </del>	<del></del>		
		<del> </del>	<del>†                                      </del>	<del> </del>			
		<del> </del>	-	<del> </del>			
		<del> </del>	<del> </del>				

Comments:			

LDC #: 14993A22

### **VALIDATION FINDINGS WORKSHEET**

Page:_	of
Reviewer:	MG
2nd reviewer:	m
_	

SDG #: 158637	Field Duplica	<u>tes</u>	Reviewer:	MG
METHOD: Radiochemistry (Method: 90	0.0			
<ul> <li>         \( \begin{align*}             \limits_N \ N/A \\</li></ul>	dentified in this SDG? ted in the field duplicate p	airs?		
	Activity ( PC	::/L )		
Isotopes	5	6	RPD	
Gross Alpha	∂8.2	<i>36.</i> 8	5 (= 20)	
Gross Beta	10.3	10.2	1 (≤ ≥0)	
			· · · · · · · · · · · · · · · · · · ·	
L				
	Activity (	)		
Isotopes			RPD	
	_Activity (	,		
Isotopes			RPD	
	Activity (			
Isotopes	Activity		RPD	
13010000			nru .	
A				——   <u> </u>
	<del> </del>			<del></del>

LDC #: 14993A22 SDG #: 158637

### VALIDATION FINDINGS WORKSHEET Detector Efficiency Calculation Verification

Page: _ (_of_/ Reviewer: _ H & ____ 2nd Reviewer: _ Hu____

METHOD: Radiochemistry (Method: 900.0

The detector efficiency for instrument # ____ was recalculated using the following equation:

E = (cpm) (dpm) Where, cpm = counts per minute dpm = decays per minute

			. Recalculated	Reported	
Type of Analysis	Analyte	Recalculation	E or MDA	- E or MDA	Acceptable (Y/N)
Detector Efficiency	Th-230 for Gross d	E = for 56.5 mg  3080.6 (cpm) = 0.14610  21085.6 (dpm)	0.1461	0, 1461	- Y

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 14993A22 SDG #: 158637

### VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

	Page:_	1	_of_	1
	Reviewer:_		MO	·
2nd	Reviewer:			m

		_	
METHOD: Radiochemistry	v (Method:	900.0	

Percent recoveries (%R) for a laboratory control sample, a matrix spike and a matrix spike duplicate sample were recaluculated using the following formula:

 $%R = \frac{Found}{True} \times 100$ 

Where, Found = activity of each analyte measured in the analysis of the sample.

True = activity of each analyte in the source.

A matrix spike and matrix spike duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD =  $\frac{|S-D|}{(S+D)/2}$  x 100

Where, S = Original sample activity

D = Duplicate sample activity

					Recalculated	Reported	
Sample ID	Type of Analysis	Analyte	Found/S (units)	True/D (units)	%R or RPD	%R or RPD	Acceptable (Y/N)
	Laboratory control sample				·		
LCS		Gross d	178 (pci/ ₍ )	144 (pc:/L)	124	124	Y
	Matrix spike sample						)
14		Gross B	490.5 (PC:/)	402 (pci/L)	116	116	
	Duplicate RPD						
19		Gross d	10.4 (рс;/)	12.7 (pa/L)	20	20	
	Chemical recovery						
				,			

Comments:	Refer to appropriate worksheet for list of qualifications and associated samples whe	en reported results do not agree within 10.0% of the recalculated results.
	· · · · · · · · · · · · · · · · · · ·	



LDC #:_	14993A22
SDG #·	158637

### VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	ofl_
Reviewer:	MG
2nd reviewer:	- hus

METHOD: Radiochemistry	(Method:	900.0	

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>YN N/A</u> Have results been reported and calculated correctly?

N N/A Are results within the calibrated range of the instruments?

Analyte results for #1, Gross d reported with a positive detect were recalculated and verified using the following equation:

Activity =

(cpm - bckgrd cpm) (2.22)(E)(Vol)(CF)  $\frac{0.2570 - \left[ \left( \frac{669}{500} \right) (0.00289) \right]}{(2.22) (0.1460) (0.075 L)} = 10.413 p^{Ci}/L$ 

E = Efficiency Vol = Volume

CF = %R, Self-absorbance, abundance, ect.

#	Sample ID	, ' Analyte	Reported Concentration (PCi/し)	Calculated Concentration ( PC:/( )	Acceptable (Y/N)
ı	1	gross &	10.4	10.4	Y
		gross B	7.52	7.60	↓
	·	. 0		,	
			<u> </u>		
				ţ.	
					·
					·

٠.	ote:	
_		



APCL Form 4-101, Ver. 4.0, Dec. 20, 1994.

### Applied P & Ch Laboratory

Chain of Custody

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Please Print in pen

Page 12 of Z

Client:	The west of the same	Contact:	· <u> </u>	1 14.55	Tel	#:	<u> Krija</u>	20°	q- 3	1/2 1	Fa	x #:	355	269 ILT	1 -
Address:	IN FOUND ONT WE	City:	21. D.c	. O	Stat	te:	<u>: /\</u>				Zij	code		7 7-3	
Bill to:	The work					7.1	<u> </u>	3,	Analys	is I	tems	-т	т 1		
Project Name/C	ode Carl Tradetain	A23 Job # 3	19 084	P.O. #	· · · · · · · · · · · · · · · · · · ·	1,00	7	15/1		1	1			White - With	·
	DOVAN ELTERO					15.3	(		[đ			.	11	Yellow - Lab c	
Due Date: Vreg	gular rush:days hor	ars Sampled I	р <b>у</b> : 🧷 📐	655		1	14		[ ]					Pink - Origina	tor
Field Sample ID No.	Sample Description	Date Time Collected	Sample Matrix	Preser- vation	# of Containers	1.0	C1-40							Remar	ks
	02 14417 123	1.106 :102	Cart Same	$\leq$ L		X				_			$\perp$		
	030610W-14A 123	43/04-050	18 27 2	MCL	<u>-</u>	X				$\perp$		<u> </u>			
	13 16MW 4A 125			1			X			$\perp$		1			
		115/01, 6418										X		<u> </u>	
	S MANU-11A -23 :						X								
	U.S. 06/10/10/14/123	l i	ž.					1		Τ					
		1/15/06 050			1				X		ļ <u>.</u>				
	·		<u></u>	l L				$\perp$		$\perp$					
					ļ										
		100 Va A _	161			L				1					
			(4) M	••											
						ļ.,									
								T.	,	7					
QC Requirement:	Regular; QA/QC Report;	WIP; Raw Data;	Extended	Raw Data	CLP; AC	E [	AFC	EE [	NEES	A	(E, ¢	C or D	); 🔲 (	Other(P	ease specify)
Sample Disposal:	Return Disposal by APCL													sys after samples a	
,	ns:				Tag #	_			Æ	T	empe	ratur	: [	Room Cold (	°C)
Relinquished						у	,	l. Lord	111	11	//	Da	te/Ti	Room Cold (	1 160
Relinquished	by	Date/Time	/ 400		Leceived b	•	1						ite/T	· •	1 1 5 m 1 1
APCL USE	APCL USE ONLY Service # Note:														
	that all terms described in the propos	als, quotations for this	project, and	/or the g	terms provid	led i	n the c	urrent	APCI	price	sched	iules v	vill be	followed. APCL rese	rves igh



APCL Porm 4-1ul. Ver. 4.0. Dec. 20. 1994.

### Applied P & Ch Laboratory

Chain of Custody

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Please Print in pen

Page ____ of ____

Client:	TARRAN PRINCIPOS	Contact:		をいしっさ	Te	#:	Š.	1 (	3-3	JR 3	Fax	#: 🤻	( , × · · )	262 477
Address:	1 Julian Die		~~		Sta	ite:	( , ,	·	<u></u>		Zip	code:	· •	143
						<u> </u>	<u>्</u>	Q	Analy	is I	tems			
Project Name/C	ode The Live in M	₹ <u>d ~ 3</u> Job #		P.O. #			7						- 1	White - With report
	ELVID TOD		notation #					: إيز				.		Yellow - Lab copy
Due Date: Ureg	gular  rush:dayshor	urs Sampled l	by:	<u> </u>	<del></del>				.	ļ				Pink - Originator
Field Sample ID No.	Sample Description	Date Time Collected	Sample Matrix	Preser- vation	# of Containers	.) 141	.: .:							Remarks
	C1. MW271-123	11. doe 1234	10/2010	dom	2									* 20 CM 20 23
	M 190201 123	116/06 254	3200	HCL	2	X								
	02_NLWM123	411 July 1203	where	1103	1			$\bot$		$oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$				
	43 ALASA (23	Halac 200	)	· Vi			X		$\prod$					
	1 MEWSA 123	Victor 1253	مير بي (عب ر		2	X								
	11 - Obacol 3 123	1:106 101		1 4			X							
	111. Carrier 3 123	Miles de		(L		X								
	11- UGMW63-123	Trelow TUA		1 / AL /2	Ì			X	1					
ì	"并一个大玩!-123	-	1120	NCL	7	X								ToRlooks
	2000 182123	12.106 CST1	654 F Sec.	- CL		X								
		15/06/1548	idate	: - C L	2	X								
	3 School SxA-123	15/06 415	2 N. C	INCL	2	X								
	U3 06 1 1 7 7 7 12 8	I		HCL		X								
	12 NOV 7 523	6-16-6-138	620 V	HOL	2	X								
	14.6.14.3.0A 113	11/1/10/01/21	water	HCL	0	X								
QC Requirement:	Regular; QA/QC Report;	WIP; Raw Data;	Extended	Raw Data [	CLP; AC	E [	AFC	EE [	NEES	A	(E, C	or D);	Oth	er(Please specify)
Sample Disposal:	Return Disposal by APCL	Hold for	days after rec	eiving date.	If no	ot sp	ecifled	i, san	ples w	ill be	disca	rded 4	5 days	after samples are received
Sample Condition	ns: 🔲 Intact; 🔲 Broken. Coole	er Seal:	Broken;	None .	Tag #			<b>-</b> .	ž.	Te	mpere	ature:	□ R	oom Cold (°C)
Relinquished	by he was	Date/Time	4/66 /i	6:07 R	leceived l	у	توي		<del>ت</del> السرائية الم	ب او پار	<del>7</del>	Date	/Time	eg/20/01/16
Relinquished	by	Date/Time	1	R	leceived l	у	- I	V.	<i>y</i> *			Date	/Tim	e  /
APCL USE (	PCL USE ONLY Service # Note:													
	that all terms described in the proposa	ds, quotations for this	project, and	,		led in	the c	urrent	APCL	price :	schedu	les will	be follo	owed. APCL reserver 'right



APCL Form 4-101. Ver. 4.0. Dec. 20. 1994.

### Applied P & Ch Laboratory

Chain of Custody

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Please Print in pen

Page ____ of ___

	OFEderal Program				Tel	#:	858	168-	<u> 33</u>	85	Fax	#:	358	768-9677
	411 Trumpant St.	SLL City:	SAN DE	100	Stat	te:	مقرر							/23
	mE						\$		lysis	Ite	ems			
	lode #318 084	Job #		P.O. #			\ \?		$ \chi $					White - With report
	MUAS OF TORD		otation #	· · · · · · · · · · · · · · · · · · ·			3.5	73	$\mathbb{N}$				.	Yellow - Lab copy
Due Date: Are	gular	urs Sampled	oy: Dave	Lange				(No prosed)				1.		Pink - Originator
Field Sample	Sample	Date Time	Sample	Preser-	# of		<del> </del>   <u> </u>	23		$\setminus \mid$				
ID No.	Description	Collected	Matrix	vation (	Containers		3 5	€ (1)		$\perp$	$\perp$	$\perp$	1/	Remarks
OH-DEWAY	664-123	3/16/06/1121	Water		2	_	1 1			_\		以		
02 NEW 7 -	123	3/16/04 1402	water	<b>ــــ</b>	2							DY		
OZNEW7 -	323	3/16/04/408	WATT	1	2		1 1					V		
05. DI-MWG	8A-123	3/16/06 0917	Water		2		1 1				1	7		
03-6-MW	65×A-123	3/15/06/1345	Water	•	3		1 1	1			1			
	658A-323	3/15/04/348			3		11				7	$ar{1}$		
		11.40017.0	7,3						$\Box$		1	hfill		
									$\Box$		/	+		
							$\vdash$		+	-		+	\	
							<del>  </del>		+	$\dashv$	_	╁	<del>                                     </del>	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·						╂╼┼	-	<del>/</del>	+		<del>  \</del>	
				3///		_		<del></del>	+ ,		+	-	+	
		<del> </del>	·	116/	2/			1	14	_	$\bot$	4	<del>    '</del>	
				· 6	6						$\Rightarrow$	<u> </u>		
						-								
QC Requirement:	Regular; QA/QC Report;	WIP; Raw Data:	Extended	Raw Data C	LP; TACE	3 F	AFCER		ESA		E, C o	r D):	Othe	r (Please specify)
Sample Disposal:	Return Disposal by APCL		•											after samples are received.
•	·			*					•					
	is: [] Intact; [] Broken. Cook	er Seat:intact;	□ Droken;	I None .	Tag #				<u></u>	1en	ipera	ture:		com [ Cold ( C).
Relinquished														
Relinquished	telinquished by Date/Time / Received by Date/Time /													
APCL USE	APCL USE ONLY Service # Note:													
Clients und	that all terms described in the propose	als, quotations for this	project, and/	or the g	erms provide	d in	the cur	rent AP	CL pr	ice sc	hedule	s will	be follo	owed. APCL reserve ight



# Chain of Custody

13760 Magnolia Ave. Chino CA 91710
Tel: (909) 590-1828 Fax: (909) 590-1498

Please Print in pen
Page _____ of

Client: ( ) M		(	Contact:	allha	MOSG	Те	l #: ^{&lt;}	545	, S.A.	1548	Fax #	: 595	1.769,7677	_
Address:			City: 4	Oliv DI	<b>100</b>	Sta	ate:	( p)			Zip co	de: 72	2123	
Bill to: ( jyw								.,	Anج	lysis It	ems			
Project Name/C	ode MCAS CITOR GW	Μ.	Job # 67	218.034	P.O. #			Τ,	5 2				White - With report	
Project Address	Mas Fl Ton		APCL Qu	uotation#			£26.0B	- (S				11	Yellow - Lab copy	l
ue Date: 📈 reg	gular 🗌 rush: days ho	urs S	Sampled	by: AN				٠ اي	事:				Pink - Originator	1
Field Sample ID No.	Sample Description	Date Colle		Sample Matrix	Preser- vation	# of Containers	10 G		Griss Apple Bet				Remarks	
	05-DGMW 67A-123	3/17/06	0935	WATER	- HC	2.	X							ヿ
	Et .	,	11		HNO3	- 2		ZT	X					
	3.1		i,		None			X	-1				VOCS ETERS M	
	05NCW1-123		0830		HCI	2	$\times$	ľ					-	
	<i>i</i> ,		11		ING	2		$X^{T}$	X				an Gum 316,310	1.1
	<i>j</i> .		11		None								•	7
	01_DBMW40-123		1052		HO	2	X						inflats 12m on	Û
	1,		14		HNO3	2		X =	X					
	372-923				HCI	2	X						Gross Alpha Pola	
		ļ	<b>↓</b>			<del> </del>	+						- FPA 900	
					1.	_	T							
				11	AS A	35	+-+							$\neg$
					3	706	11	$\dashv$	╁╌╁╌			$\dashv$		$\dashv$
							1-1	+						
			<u> </u>				##							$\dashv$
C Requirement: ample Disposal: ample Condition	Regular; QA/QC Report; QReturn Disposal by APCL  Is: Intact; Broken. Coole  by ABC	Hold for	r	days after r	eceiving date.	If no	ot spec	cified,	sample	will be	discarde	d 45 day	ys after samples are receive	ed.
elinquished	by China Moss	Date/T	ime 3/1	7/06	/ / 2   O F	leceived l	by ·	Sales in	779207	1	, D	ate/Tir	ne 2/2/11/12	
elinquished	by	Date/T	lime	•	/ F	Received l	by	11/ N	•		D	ate/Tir	ne //	
APCL USE	ONLY Service #				Note	: , .								Ħ
lients und und	that all terms described in the propose vice or withhold delivery of any reports	ds, quotatio	ns for this	project, an	d/or the g	d terms provid	ded in	the cu	rrent AP	CL price s	chedules	will be fo	ollowed. APCL reserve ri	ght



Chain of Custody

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Please Print in pen

Page ____ of ___

<del> </del>	101. (303) 330-102	0 . ux. (30	3) 030 1130										
Client: Ov	<b>Λ</b>	Con	itact: 111779	Mos	76 Tel	#:	9 <i>5</i> /5	ક	61.15	48 1	Fax #:	84	8,268,9677
	14 Famhan St Ste	210 City	r: Fan Die	(U)			0					7.	2123
Bill to: CDM	Denver			<i>-</i>					Analysis	Iter	ns		
Project Name/C	ode MOAS EI TOWN	Job	#6218,084	P.O. #			27	3					White - With report
	MCAS ET TOVO	APO	CL Quotation #			2		3					Yellow - Lab copy
Due Date: Pres	gular 🗌 rush: days hor	urs Sam	ipled by: AN			5 (	3	2477					Pink - Originator
Field Sample ID No.	Sample Description	Date Ti Collecte		Preser- vation	# of Containers	VIUC :	Metals	<u> </u>					Remarks
	MNEW1-123	3/20/06/11	24 WATER	HU	2	X							
		11	11 (1	HN03	1		X	T					
		11	et (i	None	1								
	Bt 03- 923		- 1	HCI	2	X							·
		<b> </b>				<u> </u>	-+			┝╌┼╴	++		
			_					$\top$	11			4	
					,		$\vdash$	-				$\dashv \dashv$	
				<del></del>	INDS	5	<b>-</b>	┵			┪		
				MAY			$\vdash \vdash$	+	+++	- -	++	++	
			<del></del>	VV	3120/06	-		╬		-			
					1			- -		$\vdash$		$\dashv$	
								_			$\perp \perp$		
											$\perp \perp$		
								-	+ T		+		
QC Requirement:	Regular; QA/QC Report;	lwip. $\square_{\text{Rew}}$	Data: Extended	Raw Data	TOLE: DAG	e ſ	TAFO	EE	ONEESA	(F	CorD	): Do:	her (Please enecifu)
	_												
Sample Disposal:	Return Disposal by APCL	—	Π	<u> </u>						. /_			s after samples are received
Sample Condition	ns: Intact; Broken. Coole	er Seal: UIn	ntact; Broken;	None.	Tag #		- 25			Tem	peratur	e:     ]	Room Cold (°C)
Relinquished	by Cui 16 Miss	Date/Tim	16 3/20/CE /	1542 B	leceived b	y –	م و مجمعیت		1000		D	ate/Tin	ne 3155801134
Relinquished	by	Date/Tim	le /	. F	leceived b	У					D	ate/Tin	ne /
APCL USE	ONLY Service #			Note									
Clients und id	that all terms described in the proposa- vice or withhold delivery of any reports	als, quotations f	for this project, and, sole discretion the te	or the g				urrei	t APCL p	rice sch	edules	will be fo	llowed. APCL reserve right



and that all terms described in the proposals, quotations for this project, and/or the g

service or withhold delivery of any reports, if in APCL's sole discretion the terms of the

# Chain of Custody

I terms provided in the current APCL price schedules will be followed. APCL reserver

ject have been broken.

13760 Magnolia Ave. Chino CA 91710 858-869-7548 Please Print in pen Tel: (909) 590-1828 Fax: (909) 590-1498 Fax #: 858-268-9677 Client: DM Contact: Clirt MOSS Address: 9444 Famham St. Ste 210 City: San DICAO Zip code: 92123 State: Bill to: CDM Denver Analysis Items Project Name/Code AICAS El Toro Job #6218,084 P.O. # White - With report Project Address MCAS t | Town APCL Quotation # Yellow - Lab copy Due Date: Pregular Trush: days Sampled by: And Pink - Originator Field Sample Date Time Preser-Sample Sample # of ID No. Description Collected Matrix vation Containers Remarks M2_ NEWII-123 3/21/06/1546 HC WATER HN03 , ( 11 11 DZ_DGMW59-123 ıί 110 11 02_DGMW59-123 MS/MSD HCI u 110 11101 HNDZ 11 102-DBMW59-123 411102 1101 Bt4-923 Regular; QA/QC Report; WIP; Raw Data; Extended Raw Data CLP; ACE AFCEE NEESA (E, C or D); Other QC Requirement: Return Disposal by APCL Hold for _____ days after receiving date. Sample Disposal: If not specified, samples will be discarded 45 days after samples are received. Temperature: Room Cold (_ Date/Time 3/22/06 /1525 Received by Scal Date/Time 3/22/06 /1525 by airtis Moss Relinguished Relinquished Date/Time Received Date/Time APCL USE ONLY Service # Note:



Chain of Custody

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Please Print in pen

Page _____ of ____

Client: CD	4	Contact: (	<u>Curts</u>	Moss	Te	1 #:>	358	86	975	48	ax #: {	358 Z	6896	$\pi$		
Address: 🥎 यां	4 Facilian	City: S	an Dic	رين -		ate:	_				Zip code					
	Denvec			<u> </u>		<u> </u>			Analys	is Iter	ns			•		
	lode MCAS IT! TOCO		18.084	P.O. #		]	믨	٠ <u>۲</u>	걸리				White - V	Vith report		
	MCAS EITOCO		otation#			<b>.</b>	4	1 2 C	2017				Yellow - I	ab copy		
Due Date: re	gular rush: days ho	urs Sampled l	by: AN		: .	۱,	1		7				Pink - Or	iginator		
Field Sample ID No.	Sample Description	Date Time Collected	Sample Matrix	Preser- vation	# of Containers	N N	Te.		3				Re	marks		
	02 NEW 2-123	3/22/06/1122	water	LEL AV			X						Needs	Sliver	50	
	02-NEWZ-123	B/22/06 1122	water	1/5/02	1			X	7						J	
	02_NEW2-123	1/22/06/1122			2	X		1								
	17-DGMW82-123	1/22/06/1306	1		1		<b>\</b>	7								
	17. DGHW87-123	127/06 306					$\sqrt{1}$						conjust a	i <del>e teris i</del>	(C.L.)	i Macibes
	17-DGHW8 2-123	122/06 1306		HCL	2	X		T	11		1		12372 5 7 7			
	02 NEW16-123	122/010 1016						XT								
	02NEW16-123	122/04/01/6		٠, -	Ż	X	1									
	OZNEW15-123	122/06/0917			1			<b>-</b>								
	02 NEW15-123	122/06/0917				$\Box$	$\mathbf{X}$	1	1					-		
		1/22/06/2917	1 '		2	X										
,:·		1/22/06 1016					X						Needs	Elteria		
	OZNEWIO 123	122/010 1016	1	J	1			1	1				1		3	
	BTS-923	1/22/01/2	ŀ	, J	2	X		T								
								T								
QC Requirement:	Regular; QA/QC Report;	WIP: TRaw Dava:	DEvtended 1	Raw Data F	TCLP: DAG	:E [	larc'	ee l	NEES	A (P	Cor D)	. Dark		(Please sp	acifu)	
														-` .	"	
Sample Disposal:	Return Disposal by APCL	•		_		-	cinec	1, 581	mbiez M				after sampl		1	
Sample Condition	ns:				Tag #								om Co			
Relinquished	by Avance Neigh	Date/Time3/Z	2/06/	1525 R	eceived b	PX X	cak	/_	يرك ي	har	~_Da	te/Time	422/de	» /152	25	
Relinquished	by	Date/Time	. 1	R		oy .						te/Time				
APCL USE	ONLY Service #			Note											$\overline{\ }$	
	that all terms described in the propose				terms provid			urren	t APCL	price sch	edules w	ill be follo	wed. APCL	reserve	ight	



Chain of Custody

1376	) Ma	gnolia Av	e. Chi	no C	A 91710
Tel:	(909)	590-182	8 Fax	: (909	) 590-1498

Please Print in pen

Page ____ of ___

Relinquished by Date/Time / Received by Date/Time /  APCL USE ONLY Service # Note:		- Tel. (303) 330-10.	20 Tux. (303) 33	0-1150									
Bill to: Chill DCM [Project Address   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Continuers   Contin						Tel #	<b>#</b> :8	98.5	869.7				
Bill to: Chy Nchrte Project Name/Code MCN2 [1 Tot)	Address: Chill	Familian St Stc 2	10 City: 50	lu Dica	0	State	e:	M			Zip code:	921	23
Project Address	Bill to: (Div)	Demer		,					Analy	sis Ite	ms		•
Field Sample Description    Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected   Collected Matrix varion   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected	Project Name/C	lode AICHS [1 Tono 61	NM Job #6	218.084:	P.O. #								White - With report
Field Sample Description    Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected   Collected Matrix varion   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected	Project Address	MCAS El Jon						2 2	11				Yellow - Lab copy
Field Sample Description    Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected Matrix varion   Collected   Collected Matrix varion   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected   Collected	Due Date: Xre	gular Trush: days ho	ours Sampled	by: AN				গ্র 👌			1 1		Pink - Originator
DNO   Description   Collected   Matrix   vation   Containers   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   Remarks   R	Field Sample	Sample	Date Time	Sample	Preser-	# of	<u></u>	1 1				1   1	
None		<del>-</del>	Collected	Matrix	vation C	ontainers	Z.	Ţ					Remarks
		16-MW8-123	3/23/06 0919	WATER	401	4	X Y						
			11.		None			X				1 1 1	
		11 Aur 3-123	1200			4	X	7					
			<del></del>		<del>                                     </del>	;	<del>'                                     </del>						
CRequirement:   Regular;   QA/QC Report;   WIP;   Raw Data;   Extended Raw Data   CLP;   ACB   APCEE   NEESA   (E, Cor D);   Other   (Please specify)			<del> </del>		· · · · · · · · · · · · · · · · · · ·	1	大	$A^{\wedge}$		++			
QC Requirement: Regular; QA/QC Report; WIP; Raw Data; Extended Raw Data CLP; ACE AFCEE NEESA (E, C or D); Other (Please specity)  Sample Disposal: Return Disposal by APCL Hold for days after receiving date. If not specified, samples will be discarded 45 days after samples are received  Sample Conditions: Intact; Broken. Cooler Seal: Intact; Broken; None. Tag # Temperature: Room Cold (Cold Cold Cold Cold Cold Cold Cold Cold		· •	7. 1 1 1 1 1 1 1 1		<del></del>	7 1	4	1				1-1-1	
QC Requirement:   Regular;   QA/QC Report;   WIP;   Raw Data;   Extended Raw Data   CLP;   ACE   AFCEE   NEESA   (E, C or D);   Other   (Please specify)    Sample Disposal:   Return   Disposal by APCL   Hold for   days after receiving date.   If not specified, samples will be discarded 45 days after samples are received    Sample Conditions:   Intact;   Broken.   Cooler Seal:   Intact;   Broken;   None.   Tag #   Temperature:   Room   Cold ( °C)    Relinquished   by Arthory   Date/Time   Received   by   Date/Time   APCL USE ONLY   Service #   Note:    Clients ur   Liand that all terms described in the proposals, quotations for this project, and/or the   Tal terms provided in the current APCL price schedules will be followed. APCL resery   eright			3 22 00 11				$\downarrow$	$\perp X$		_  -	_ _ _		
QC Requirement:   Regular;   QA/QC Report;   WIP;   Raw Data;   Extended Raw Data   CLP;   ACE   AFCEE   NEESA   (E, Cor D);   Other   (Please specify)  Sample Disposal:   Return   Disposal by APCL   Hold for   days after receiving date.   If not specified, samples will be discarded 45 days after samples are received  Sample Conditions:   Intact;   Broken.   Cooler Seal:   Intact;   Broken;   None.   Tag #   Temperature:   Room   Cold ( °C)  Relinquished by   Date/Time   Received by   Date/Time   Date/Time   APCL USE ONLY   Service #   Note:  Clients ur tand that all terms described in the proposals, quotations for this project, and/or the Tal terms provided in the current APCL price schedules will be followed. APCL resery   e right		BT6-923		W.	HCI	2	X				_ _ _		·
QC Requirement:   Regular;   QA/QC Report;   WIP;   Raw Data;   Extended Raw Data   CLP;   ACE   AFCEE   NEESA   (E, Cor D);   Other   (Please specify)  Sample Disposal:   Return   Disposal by APCL   Hold for   days after receiving date.   If not specified, samples will be discarded 45 days after samples are received  Sample Conditions:   Intact;   Broken.   Cooler Seal:   Intact;   Broken;   None.   Tag #   Temperature:   Room   Cold ( °C)  Relinquished by   Date/Time   Received by   Date/Time   Date/Time   APCL USE ONLY   Service #   Note:  Clients ur tand that all terms described in the proposals, quotations for this project, and/or the Tal terms provided in the current APCL price schedules will be followed. APCL resery   e right	-		<del>                                     </del>										
QC Requirement:   Regular;   QA/QC Report;   WIP;   Raw Data;   Extended Raw Data   CLP;   ACE   AFCEE   NEESA   (E, Cor D);   Other   (Please specify)  Sample Disposal:   Return   Disposal by APCL   Hold for   days after receiving date.   If not specified, samples will be discarded 45 days after samples are received  Sample Conditions:   Intact;   Broken.   Cooler Seal:   Intact;   Broken;   None.   Tag #   Temperature:   Room   Cold ( °C)  Relinquished by   Date/Time   Received by   Date/Time   Date/Time   APCL USE ONLY   Service #   Note:  Clients ur tand that all terms described in the proposals, quotations for this project, and/or the Tal terms provided in the current APCL price schedules will be followed. APCL resery   e right		,											
QC Requirement:   Regular;   QA/QC Report;   WIP;   Raw Data;   Extended Raw Data   CLP;   ACE   AFCEE   NEESA   (E, Cor D);   Other   (Please specify)  Sample Disposal:   Return   Disposal by APCL   Hold for   days after receiving date.   If not specified, samples will be discarded 45 days after samples are received  Sample Conditions:   Intact;   Broken.   Cooler Seal:   Intact;   Broken;   None.   Tag #   Temperature:   Room   Cold ( °C)  Relinquished by   Date/Time   Received by   Date/Time   Date/Time   APCL USE ONLY   Service #   Note:  Clients ur tand that all terms described in the proposals, quotations for this project, and/or the Tal terms provided in the current APCL price schedules will be followed. APCL resery   e right	la				( )		$\neg$				-		
QC Requirement:   Regular;   QA/QC Report;   WIP;   Raw Data;   Extended Raw Data   CLP;   ACE   AFCEE   NEESA   (E, Cor D);   Other   (Please specify)  Sample Disposal:   Return   Disposal by APCL   Hold for   days after receiving date.   If not specified, samples will be discarded 45 days after samples are received  Sample Conditions:   Intact;   Broken.   Cooler Seal:   Intact;   Broken;   None.   Tag #   Temperature:   Room   Cold ( °C)  Relinquished by   Date/Time   Received by   Date/Time   Date/Time   APCL USE ONLY   Service #   Note:  Clients ur tand that all terms described in the proposals, quotations for this project, and/or the Tal terms provided in the current APCL price schedules will be followed. APCL resery   e right	<u> </u>			17.11	h 2 111	102	==					<del>         </del>	
QC Requirement:   Regular;   QA/QC Report;   WIP;   Raw Data;   Extended Raw Data   CLP;   ACE   AFCEE   NEESA (E, C or D);   Other (Please specify)  Sample Disposal:   Return   Disposal by APCL   Hold for days after receiving date. If not specified, samples will be discarded 45 days after samples are received  Sample Conditions:   Intact;   Broken. Cooler Seal:   Intact;   Broken;   None. Tag # Temperature:   Room   Cold ( °C)  Relinquished by Date/Time   Received by Date/Time   Date/Time   Note:  APCL USE ONLY Service # Note:  Clients ur and that all terms described in the proposals, quotations for this project, and/or the all terms provided in the current APCL price schedules will be followed. APCL resery e right			+	(1)	7 7	3106	十	$\dashv$		+	++-		
QC Requirement:			-		5/2	719,-	-			+		<del>       </del>	
QC Requirement:			T				_	_ _					
Sample Disposal:	**			<u> </u>									
Sample Disposal:				<del> </del>			$\dashv$	+	$\vdash$			<del></del>	
Sample Disposal:	log P	Пр	]wrp. □pp	DEvt-and-d	Raw Data C	T.P. DACE	П	A FC PE	NEE	SA (	E C cr D).	Other	(Plazza gnacifu)
Sample Conditions: Intact; Broken. Cooler Seal: Intact; Broken; None. Tag # Temperature: Room Cold ( °C)  Relinquished by Date/Time 3 7 3 06 / 1600 Received by Date/Time 2/2 3/66 / 1600 C  Relinquished by Date/Time / Received by Date/Time // Particle / Received by	l' '												
Relinquished by Arthur Mary Date/Time 3 2 3 06 / 1600 Received by Date/Time 3 2 3 166 / 1600 Received by Date/Time 3 3 166 / 1600 Received by Date/Time 4 Note:  Clients ur 'tand that all terms described in the proposals, quotations for this project, and/or the Tal terms provided in the current APCL price schedules will be followed. APCL reserve e right	}						_	ntied,	samples	1			
Relinquished by Date/Time / Received by Date/Time /  APCL USE ONLY Service #  Note:  Clients ur 'tand that all terms described in the proposals, quotations for this project, and/or the rall terms provided in the current APCL price schedules will be followed. APCL reserver in the reserver in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in th	Sample Condition	ns:	ler Seal: Intact;	∐Broken;	☐ None.	Tag #			/				
Relinquished by Date/Time / Received by Date/Time /  APCL USE ONLY Service #  Note:  Clients ur 'tand that all terms described in the proposals, quotations for this project, and/or the rall terms provided in the current APCL price schedules will be followed. APCL reserver in the reserver in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in the current approach in th	Relinquished	by Athy Mrs.	Date/Time 3	3/06 /	1600 Rece	eived by	بر	منكن ألم	MI	10/	Dat	e/Time	323/26/160 6
Clients ur 'tand that all terms described in the proposals, quotations for this project, and/or the 'tal terms provided in the current APCL price schedules will be followed. APCL reserve right	Relinquished	- ***	Date/Time	/	Rece	eived by	,	i ¥	•		Dat	e/Time	1
Clients up 'tand that all terms described in the proposals, quotations for this project, and/or the 'ral terms provided in the current APCL price schedules will be followed. APCL reserve e right	APCL USE	ONLY Service #			Note:				<del></del>				
	Clients ur 'tand	that all terms described in the propor	sals, quotations for thi	project, and	or the ral t				rent APC	L price so	hedules wi	ll be follow	wed. APCL reserve righ



# Chain of Custody

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Please Print in pen

Page of

Client: CD/	N .	(	Contact:	MIKE	Hi	Smah	Te	l #:	84	5,70	58.	338	3 Fa	ax #	: 8	<u>58.</u>	268.9617
Address: 9416	14 Familian St Ste 2	210	City: 5	an	Dic	A D			CP	-						921	
Bill to: CON	Denver TRPSHE	16			•	J					Anal	ysis	Item	s			
Project Name/C	ode MCAS-CH-TONO-C	WW J	lob #62	15.0	84 1	P.O. #		13					1				White - With report
	MCPS LI TON		APCL Qu					C-IVA	]   .				İ				Yellow - Lab copy
Due Date: reg	gular 🗌 rush: days hor	ırs S	ampled b	у: М	Ht _			٦٢.	<b>†</b>	-							Pink - Originator
Field Sample	Sample	Date	Time	Sam	ple	Preser-	# of				1						
ID No.	Description	Colle		Mat		vation	Containers	1>		<u> </u> -	_						Remarks
16~V	MI-SG-123	3 23 06		,	2	SUMMA	1	$\bowtie$									
16_V	MI-56-223	į.	0830	1)		11	ĺ	$\times$									
16_N	1PE1-5G-223	, (t _t	1310				1 -	$\times$									
16_N	PEI-56-123	ľ,	1250					X									·
	W07-56-123		1030				(	X						П		1	
	AW07-5G-273	11	1100	J		V	1	X						$\Box$	十	$\top$	
		14	1400				¥	$\sqrt{}$	1		T		7		1	1.	
16_ MPE1-SG-323 " 1400 V X																	
				:				+	<del>                                     </del>	+	+	$\vdash$	+	$\vdash$	士	#	
					$\neg \exists$		-		┼╌┼╴	+		-		H	-	+	
				<del></del>	$\overline{/}$	w.h	LINAS	F		+	1	$\vdash$		╂╌┤		+	· · · · · · · · · · · · · · · · · · ·
						1111	12/23	<b>)</b>  k	161	- -			-	$\square$	_	+-	
						·	13/0	1			<u> </u>		╀-			_	
						1		ļ			_		$\perp$			_	
***							•									$\perp$	
QC Requirement:	Regular; QA/QC Report;	WIP: TR	law Data:	□Ext	ended	Raw Data	CLP: CAC	æ ſ	TAFC	EE [	TNE	ESA	Œ.	C or I	o): [	Othe	r (Please specify)
Sample Disposal:	Return Disposal by APCL																after samples are received
	ns:																
	<del></del>	T Stat: [	Intact;		Ken;	None	· 148#		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 	1	<i>₹</i> 0	rembe	eratu	re: [		om
Relinquished	by Cliths Miss		•	15/8	6/			) <b>y</b>	W	<i>U</i> . /							•
Relinquished .	by	Date/T	ime		/		Received 1	у		*				D	ate/	ſime	<u> </u>
APCL USE	ONLY Service #					Not	æ:									•	
Clients und	that all terms described in the proposal				and/	or the g	terms provid	led i	the c	ırrent	APC	L pric	e sche	dules	will b	e follo	wed. APCL reserves ight



APCL Form 4-101, Ver. 4.0, Decs-20, 1994.

### Applied P & Ch Laboratory

# Chain of Custody

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Please Print in pen

Page _____ of ____

Olimber 10 Fm	1 - 1-120/			/	<u> </u>	-,,		<del></del> -	2/-	<i>-</i>	52-		<del></del>	
	1 Siel-RAL	Contact:	-W.F	E 11	Tel Tel	#:	کِدِ	<u> </u>	<u> </u>	. => -5/			<u> </u>	
Address: St.	WH FARNHAMDI =	SE EISCity:	SAJ J	1490	Stat	te:		-4				code:	67 C. 1	22
	DAN DENVER		- C21			1	ГТ		Ana	ysis	Items	<del></del>		
Project Name/C			78.284			7			- [		1 1		11	White - With report
	WICHS FL TOR		otation #			71170						1.1	1 1	Yellow - Lab copy
Due Date: Lize	gular 🗌 rush: days hou	rs Sampled l	y: ( _V < \	is let	<u>هج</u> ۶	Ğ	.						11	Pink - Originator
Field Sample	Sample	Date Time	Sample	Preser-	# of	0;		집						
ID No.	Description	Collected	Matrix	vation	Containers	7		14						Remarks
	16 NUO9-123	3/28/0 5:10	420	11/1	_\	X	X	X			$\prod_{i=1}^{n}$		$\top$	
	16 MODS-173	1009	4	•	7			7			TT			
	16-MJOH-123	1105			5	1	Ш	1			11		$\top \top$	
				<del>                                     </del>		H		#	+	-	++	++	++	
	16 MUII-123	1150				$\vdash \vdash$	-/	╫	-	<del>                                     </del>	+	++		
	16 MUNI-123	1411	/_		-5	-	+	╫		-	-  -	_ - -	-  -	
	110 11/10/01-323	1415				Ш	Ш	4			11		$\perp \perp$	
	16 MPE: -123	1511			سے سے			Ш						
	16 MPE1 - 323	V 1523	V :	1	, S	V	V	V	,					
	BT7-923				Z	X								
	B+8-923		W	V	2_	X	$\Box$						$T \perp$	
							$\vdash$	-		<del></del>			#	
	j Sp. 140		4 1	arth	5 MB	N	2	_						
,			6	<del>1</del>	2/28		<del>   </del>	1			+-+	_ _		
					-670	P		+	+		+++	$\dashv$	_	
					,			#	+		++	11	11	
							7		П		<u></u>		<u></u>	
QC Requirement:	Regular; QA/QC Report;													
Sample Disposal:	Return Disposal by APCL									-				ter samples are received.
Sample Condition	ns:	r Seal: [Intact;	Broken;	$\square$ None.	Tag #			<u></u>	/	و سند م	Lemper	sture: [	Roon Roon	n Cold, C).
Sample Conditions:														
Relinquished	by	Date/Time	1 /	•	eceived by							Date/		1
APCL USE	**			Note										
Clients und tand	that all terms described in the proposa	is, quotations for this	project, and/	or the g	al terms provide	ed in	the	curre	nt APC	L pric	e schedu	les will b	e followe	d. APCL reserve right

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG											
PROJECT	NO.: 6218-	084 Round 23			SAMPLE LOCATION: 16- MWI						
PROJECT	NAME: MO	CAS El Toro			SAMPLE ID: 16-MW11-12-3						
DATE:	3280	6			SAMPLED	BY: Z	m				
EQUIPME	NT DECON	TAMINATED:	YES		PURGE START TIME: (135						
PURGING	METHOD:	Micropurge D	edicated	Bladder Pump							
SAMPLIN	G EQUIPMI			cell, MP30 com	pressor, M	P10P(Co	ntroller, M	P20			
Pump Intake	Depth:	K	Purg	ge Rate: 100 milli	liters/minute	M	linimum Purg	ge Volume:	2026		
Total Volu	me Removed		Con	troller Settings:	Refill: 1	3 Dis	charge:	Pressi	ure: 90		
Initial Grou	ındwater Lev	vel: 154.48	Con	troller Adjustme		5	Ġ.		90		
	ndwater Lev		7	troller Adjustme	ent:			<del></del>			
Actual Time	Volume Purged mL	Temperature °C	рН	Conductance (ms/cm)	Dissolved oxygen mg/L	ORP	Turbidity NTu	Static Water Level	Description		
1140	500	19.79	1.42	2.12	4.79	130	5.5	154,49	clear		
1143	୧୪୪	19.53	1.31	2.13	4,92	128	5.4	154.49	clear		
1146	1100	19.56	1.26	2.14	4.94	126	5.3		11		
1149	1400	19.88	7.16	2.14	4,80	123	5.2	155.52	11		
1152	1700	20.16	7.08	2.14	4.64	117	5.3		51		
1155	2000	19.96	7.00	2.14	4,53	113	5.3	155.52	11		
1156	2100		<b></b>	Sample	2						
1208	3300		<u> — E</u>	End Ser	mpliker	<u> </u>					
					V -						
				Whs !	2128/06		<u> </u>		·		
					71-11				<del>-</del>		
Total Value	ma Durandi	- Lu A	Total	Time: '22							
Total Volu		VOCs (X)	Metals Fil	<i></i>	MIN. neral chemis	tru ( ) (	Gross Alpha	/Reta()	Nitrite ( )		
Other	Alialysis.	`	PH &				Jioss Aipila	Dem ( )			
Total numb	Total number of bottles: 15										
		etnes DC	<u>- [. (</u>								
QC Sample	Collected?	Yes ( ) No	If	ES, then type o	f sample and	d sample l	D:				

Q11 Chicek									
Field Member	Date	Initials							
Sample Collector	3/28/06	CM							
Sample Coordinator	413/06	AMN							

	GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG											
PROJECT	NO.: 6218-	084 Round 23			SAMPLE I	LOCATIO	DN: 1b	MW0°	1 (			
PROJECT	NAME: M	CAS El Toro	-		SAMPLE ID: 16- MW09-123							
DATE:	3 28/06				SAMPLED		M	<u> </u>				
		ITAMINATED:	YES		PURGE ST	ART TIN	ME: 1)64	16				
PURGING	METHOD:	Micropurge D	edicated	Bladder Pump								
SAMPLIN	G EQUIPM			cell, MP30 con	pressor, M	P10PCo	ntroller, M	P20				
Pump Intake	Depth:	A		rbidity Meter ge Rate: 100 milli								
Total Volu	me Remove	3400 m	Coi	ntroller Settings:	Refill:	ろ Dis	scharge: 7	Press				
Initial Grou	ındwater Le			ntroller Adjustm		,5	9,0	5	80			
Final Grou	ndwater Lev		Cor	ntroller Adjustm	ent:							
Actual Time	Volume Purged	Temperature °C	pН	Conductance (ms/cm)	Dissolved	ORP	Turbidity NTu	Static	Description			
	mL			<u> </u>	oxygen mg/L	nV		Water Level				
0850	400	18.83	7.49	1.51	4.60	261	4.99	150.24	clear			
0854	800	20.12	7.43		4.63	258	4.97	150.24	ll .			
0858	1200	20.47	<u> 7.36</u>	1,53	4.24	247	4.82		14			
0902	1600	20.42	7.33	1.53	4.46	242	4.85	150.23	Į1			
0906	2000	20.91	1.29	1.54	4.33	221	4.83		((			
09107	2400		<u>- S</u> l	tuple -								
0920	3400		TOW	Sampl	ing -							
				<u> </u>	J							
				1000	34							
				AMILES	-							
					,	ter						
	l		<u> </u>		CW 3/28	100	٠					
Total Volum		2400 ml		Time: 36	min.	34						
Laboratory Other	Analysis:	vocs (X) 1	Metals Fil	tered () Ger	neral chemis	try()(	Gross Alpha/	Beta ( )	Nitrite ( )			
Total numb	er of bottles:	5			·							
Comments:	1-0. F	cldTcst	Dn=	4	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
Chem	etnes T	IMI IOZI	<u> </u>		<del></del>		· ·					
QC Sample	Collected?	Yes ( ) No (	IfY	ES, then type o	f sample and	sample I	D:					

OA Check

QA Check							
Field Member	Date	Initials					
Sample Collector	3 28 16	Cu					
Sample Coordinator							

	G	ROUNDWAT	ER MON	ITORING WE	LL PURGI	NG AND	SAMPLIN	IG LOG	3 28 06			
PROJECT	NO.: 6218-	084 Round 23			SAMPLE I	OCATIO	)N: 16.	Miller	VP.V			
PROJECT	NAME: M	CAS El Toro			SAMPLE LOCATION: 16_WW05  SAMPLE ID: 16_WW5-123							
DATE: 4	3 28 01	<del>,</del> _O			SAMPLED BY: (M MWOS							
EQUIPME	ENT DECON	TAMINATED	YES		PURGE ST			47				
PURGINO	METHOD:	Micropurge I	Dedicated	Bladder Pump	)			<u>.1</u>	<del></del>			
SAMPLIN	G EQUIPM	ENT: QED M			pressor, M	P101 Co	ntroller, M	P20	***			
Pump Intak	Pump Intake Depth: Purge Rate: 100 milliliters/minute Minimum Purge Volume: 2026 mil											
Total Volume Removed: Zory   Controller Settings: Refill:   Discharge:   Pressure:     Pressure:												
Initial Gro	undwater Le	vel: 151,80'		troller Adjustm			<u>e</u>	<u>,                                    </u>	100			
Final Grou	ndwater Lev	el: 151.61	Con	troller Adjustm	ent:	<u> </u>						
Actual Time	Volume Purged mL	Temperature °C	pН	Conductance (ms/cm)	Dissolved oxygen	ORP mV	Turbidity NTu	Static Water	Description			
0950	300	19.45	7.80	0.879	mg/L 5.42	116	1.01	Level   51,60	clear			
0955	800	20.41	1.51	0,948	5.06	113	0.71	151.83	clear			
0958	1100	21.20	1.23	1.042	4,29	116	0.89	151.91	"			
1001	1400	21.16	7.16	1.096	3.89	121	1.05	151.81	14			
1004	1700	21.54	1.15	1.099	3.77	124			<i>(</i> 11			
1009	2200		<u>-</u> \$	imple -								
1019	3200			L 3	uple							
· · · · · · · · · · · · · · · · · · ·		•		AMB	MISS				·			
					2 / 25	lu l						
Total Volu	me Purged:	2200 ml	Total	Time: 34	Cp. 3/29	<u> </u> 32			·			
Laboratory Analysis: VOCs (X) Metals Filtered () General chemistry () Gross Alpha/Beta () Nitrite () Other TPH gas diesel												
Total numb	er of bottles:	5	· · · · · · · · · · · · · · · · · · ·		<del></del>		<u> </u>					
Comments	Comments: $D0 = 4.5$											
	<del>,</del>	<u> </u>	<del> </del>		<u></u>	<del></del>	_					
QC Sample	Collected?	Yes () No (	If Y	ES, then type o	f sample and	sample I	D:					

OA Check

QA CHEEK								
Field Member	Date	Initials						
Sample Collector	3/28/06	Chi						
Sample Coordinator	4/3/06	ANN						

	G	ROUNDWATI	ER MON	ITORING WE	LL PURGI	NG AND	SAMPLIN	G LOG		
		084 Round 23			SAMPLE L	OCATIO	N: 16_	MPE	1	(
PROJECT	NAME: M	CAS El Toro	·		SAMPLE I	D: 16	- MPE			
DATE:	3(28/0	6	· · · · · · · · · · · · · · · · · · ·		SAMPLED	BY:	cm			
EQUIPMI		TAMINATED:	YES		PURGE START TIME: 1450					
PURGINO	METHOD:	Micropurge D	edicated	Bladder Pump			<del> </del>			
SAMPLIN	G EQUIPM	ENT: QED ME		cell, MP30 com	pressor, M	P10k Co	ntroller, Mi	P20		
Pump Intak	e Depth:	14		e Rate: 100 milli	liters/minute	N N	Iinimum Purg	ge Volume:	2026	
Total Volu	me Remove		Con	troller Settings:	Refill:	Z Dis	charge: 7	Press		
Initial Gro	undwater Le			troller Adjustme			·			
Final Grou	indwater Lev			troller Adjustme	ent:		•			•
Actual Time	Volume Purged mL	Temperature °C	рН	Conductance (ms/cm)	Dissolved oxygen mg/L	ORP	Turbidity NTu	Static Water Level	Descripti	on
1455	500	19.31	6.59	1.75	3.57	-29	su	15994	slightly	clu
1458	800	19.18	6.17	1.73	2,88	-30	Comments		cl	
1501	1100	19.64	6.84	1.73	2.20	-41			v	
1504	1460		6.86	1.73	2.13	-43		159.94	¢.	
1507	1700		6.87	1.72	1.98	-45			- 9	
1510	2000	20.47	6.85	1.72	1.89	-44			U	(
1511	2160	-CAN	sam	pled —						
1515	12500 He	3500	— a	Auplicate	sampl	e tak	ien —			
1939	4700		That	Samplin						
				hali	0					•
			100	1/45 ///05	5					
					145	AN				
Total Volu	me Purged:	2100 ml	Total	Time: 44	min.	4/3/04		<del></del>		·
Laboratory Other	Analysis:	VOCs (X)	Metals Fill		neral chemis	try() (	Gross Alpha/	Beta ( )	Nitrite ( )	
Total numl	per of bottles	: 10		· · · · · · · · · · · · · · · · · · ·						
Comments	+ turbidil	y meter N	010	L. 1. 1			-			
	1 - 1 - 1 - 1	1 mact or the		•		<del></del>				
OC Sample	Collected?	Yes (X) No (	') If V	ES, then type of	foomple and	l samula I	D: . /			

<u> </u>	,	
Field Member	Date	Initials
Sample Collector	3/28/06	cm
Sample Coordinator	4/3/04	AMN

	GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG											
PROJECT	'NO.: 6218	-084 Round 23	<u>-</u>		SAMPLE LOCATION: 16 _ MANT MWO!							
		CAS El Toro			SAMPLE ID: 16 - WWT - 123							
DATE:	3/28/06	<del></del>			SAMPLED	BY:	MM	101				
EQUIPME	ENT DECON	NTAMINATED	YES		PURGE ST	ART TIN	ME: 135	50				
				d Bladder Pump								
1		ENT: QED MI Lamotte	P20 Flow 2020 T	v cell, MP30 com urbidity Meter	pressor, M	P10 <b>X</b> (Co	ntroller, M	P20				
Pump Intak	/\/	1X	Pu	rge Rate: 100 milli			Minimum Pur	./1	1985			
Total Volume Removed: 4500 M Controller Settings: Refill: 22 Discharge: 80												
Initial Groundwater Level: 159.02   Controller Adjustment: 14 6. 90												
Final Grou	ndwater Lev	rel: 159.30	Co	ontroller Adjustm	ent:							
Actual Time	Volume Purged mL	Temperature °C	pН	Conductance (ms/cm)	Dissolved oxygen mg/L	ORP INV	Turbidity NTu	Static Water Level	Description			
1392	200	20.13	6.6	1 1.94	4.35	-49	see se		cleow			
1355	500	19.53	6.79	1.94	4.91	-41	comment	159.21	l (			
1358	ECC	21.51	6.82	- 1.92	3.30	-44		159.30	ti			
1401	1100	19.94	6.83	1.93	3.75	-39			11			
1404	14CC	19.06	6.80	1.92	3.34	-37			8 4			
1407	1700	18.92	6.80	1.93	2.97	-36		-	1+			
1410	2000	18.45	6.79	1.92	3.38	-34		159.30	• •			
1411	216			Sample								
1435	4500			tend So	umplina		-					
				C. J. J.		· · ·			·			
				- was l	1485_							
			·····									
Total Volu		2100 ml		l Time: 45	min.		<u> </u>					
Laboratory Other	Laboratory Analysis; VOCs (X) Metals Filtered () General chemistry () Gross Alpha/Beta () Nitrite (),											
Total numb	er of bottles	: 10										
Comments	turbi	dity meter	Will	net cours	te amairi	ч			· .			
	Comments: turbidity meter will net operate property											
QC Sample	QC Sample Collected? Yes No() If YES, then type of sample and sample ID: 16-10-10-323											
						Dup			+ 445			

Dup. Sampled at 1415

Field Member	Date	Initials
Sample Collector	5/28/Vb	CM
Sample Coordinator	4/3/06	AMN

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG											
PROJECT	NO.: 6218-	084 Round 23			SAMPLE L	OCATIO	DN: 16-	DATO	F MW04(		
PROJECT	NAME: M	CAS El Toro	•		SAMPLE ID: 16-WW - 123						
DATE:	3/28/0	6	<del></del>		SAMPLED BY: CM MW04						
EQUIPME		TAMINATED	YES		PURGE ST	ART TIM	ME: / C	43			
PURGING METHOD: Micropurge Dedicated Bladder Pump											
SAMPLING EQUIPMENT: QED MP20 Flow cell, MP30 compressor, MP10 Controller, MP20  Lamotte 2020 Turbidity Meter											
Pump Intake Depth: Purge Rate: 100 milliliters/minute Minimum Purge Volume: 2026											
Total Volu	me Remove	1: 3400 m ,		troller Settings:		Dis	charge: ப	Press			
	undwater Le	vel: 1519	Con	troller Adjustm	ent:	<del></del>	ــــــــــــــــــــــــــــــــــــــ				
Final Grou	ndwater Lev		30 Con	troller Adjustm	ent:						
Actual	Volume	Temperature °C	pН	Conductance	Dissolved	ORP	Turbidity	Static	Description		
Time	Purged mL			(ms/cm)	oxygen mg/L	w/	NTu	Water Level			
1046	300	20,36	8.06	0.865	4.50	116	0.31	151.25	chear		
1049	600	20.59	800	0.895	4.39	117	0.33	151.30	M		
1052	900	20.60	7.94	0.910	432	118	0,95	151.30	11		
1055	1200	26.58	1.86	0,917	4.12	119	0.46	151.30	4		
1058	1500	20.62	7.66	0.921	3.84	122	0.48	151.30			
1101	1800	20.68	1.56	0.924	3.63	123	0.47		μ		
107	2100	* *	-	- Kiny	Se x	_		$\wedge$	AA		
	ON			JENN	Sample				776		
1104	2/00	20.76	1.51	0,924	3.46	<b>)</b>	0.47		J.		
1105	2500 C	m < 5	ampl	e —							
1117	3400		End	sampl	lage -						
				Cupis	moss						
Total Volu	me Purged:	-400 m			min						
Laboratory Other		VOCs (X)	Metals Fil	, , , (	neral chemist i	try()(	Gross Alpha/	Beta ( )	Nitrite ( )		
			11 - 5a	s i diese							
Total numb	er of bottles	: 5									
Comments	***										
	v-										
QC Sample	Collected?	Yes () No	X If Y	ES, then type o	of sample and	sample I	D:				

Field Member	Date	Initials
	3 28 06	
Sample Coordinator	4/3/06	AMN

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG									
PROJECT NO.: 6218-084 Round 23				SAMPLE LOCATION: 16MW8					
PROJECT NAME: MCAS El Toro				SAMPLE ID: 164W8-123					
DATE:	3/23/06				SAMPLED		Neigh		
EQUIPME	ENT DECON	TAMINATED	YES		PURGE ST	ART TIN	ME: 085	7	
PURGINO	METHOD:	Micropurge I	Dedicated	d Bladder Pump	)				
SAMPLING EQUIPMENT: QED MP20 Flow cell, MP30 compressor, MP10H Controller, MP20 Lamotte 2020 Turbidity Meter									
Pump Intak	e Depth:	<u> </u>		rge Rate: 100 milli	liters/minute	N	Minimum Purg	ge Volume:	2086
Total Volu	ıme Remove	d:	Co	ntroller Settings:	Refill: 14		scharge: (	Press	
$\Gamma$ $1$ $\sim$ $2$ $\sim$	undwater Le	. 433.616	o' Co	ntroller Adjustm	ent:	2	8		90
Final Grou	indwater Lev	el. 153.57		ntroller Adjustm	ent:				
Actual Time	Volume Purged mL	Temperature °C	pН	Conductance (ms/cm)	Dissolved oxygen mg/L	ORP	Turbidity NTu	Static Water Level	Description
0902	500ml	22.61	6.92	1,214	5.76	121	0.25	1	clear
	800mL	Z2.92	6.70	1.790	6.09	124	1.39	153.56	
8090	110002	22.96	6.67	1.295	6.17	125	5.22		clear
0911	1400mL	23,08	6.63	3 1.305	6.15	127	6.18	_	clean
0913	1600ml	23.10	6.61	1.307	5.88	128	128		clear
0916	1900ml	23,19	6.60	1.309	6.01	128	2.69		dea
0918	2100 W	23,25	<i>ه</i> ,59	1.314	6.03	128	2.46		dear
0919	2200ml	5	start	Samo	ling				
0931	3400mL	E	M.	Samplin	J ~	1	<b>\</b>	//	
		<b>1</b>			<u> </u>	/_	1	<u> </u>	
							h //		
	3/23/06								
Total Volu	Total Volume Purged: 34 60mL Total Time: 34 min								
Laboratory Analysis: VOCs (X) Metals Filtered () General chemistry () Gross Alpha/Beta () Nitrite () Other 104 - 905									
TPH-A.escl									
Total number of bottles: 5									
Comments: D0 = 5									
	. 100 %		<del>. /</del>						
QC Sample Collected? Yes ( ) No ( If YES, then type of sample and sample ID:									

VII THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF T							
Field Member	Date	Initials					
Sample Collector	3/23/Dia	AMN					
Sample Coordinator	3/24/06	cm					

inbhracted

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG						
PROJECT NO.: 6218-084 Round 23	SAMPLE LOCATION: WHW 3					
PROJECT NAME: MCAS El Toro	SAMPLE ID: 16 MW3-123					
DATE: 3/23 /06	SAMPLED BY: A No. 1					
EQUIPMENT DECONTAMINATED: YES	PURGE START TIME: 1122					
PURGING METHOD: Micropurge Dedicated Bladder Pun	ip (C)					
SAMPLING EQUIPMENT: QED MP20 Flow cell, MP30 co						
Pump Intake Depth: Lamotte 2020 Turbidity Meter Pump Intake Depth: Purge Rate: 100 mi						
m. 17/1 P						
Initial Groundwater Level: 157. 14 Controller Adjust	17 0 10					
Final Groundwater Levels 4 Controller Adjust	<u> </u>					
Actual Volume Temperature pH Conductance						
Time Purged °C (ms/cm)	oxygen NTu Water					
1138 500ml 24.97 7.18 0.074	5.78 110 2.07 157.14 Clec					
	7 11 97 000 - 1					
1147 900m 24.07 6.71 0.930	1000000					
	1111 67 - 70 - 1					
119 109 119 119 119 119 119 119 119 119						
1156 1800ml Z4.466.78 0.966						
1159 2100ml 24.48 6.78 0.967 1200 3300mlm Start Samo	6.34 -78 0.25 - clea-					
	hrs I					
1212 3300mc End Sampling						
	1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
Total Volume Purged: 7760ml Total Time: 79 m	July 3/23/06					
3 1min.						
Laboratory Analysis: VOCs (X) Metals Filtered () General chemistry () Gross Alpha/Beta () Nitrite () Other TPH-Aicscl						
Total number of bottles:						
<u> </u>						
Comments: D0 = 5.5						
QC Sample Collected? Yes ( ) No ( If YES, then type of sample and sample ID:						

Field Member	Date	Initials					
Sample Collector	3/23/06	AMN					
Sample Coordinator	3/24/06	an					

	GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG								
PROJECT NO.: 6218-084 Round 23				SAMPLE LOCATION: 16HW13					
PROJECT NAME: MCAS El Toro					SAMPLE ID: 164W13-123				
DATE: 2	122/0	6			SAMPLED BY: A. N. C.				
EQUIPME	NT DECON	TAMINATED:	YES		PURGE ST	ARTATIN	IE: LURCO	1618	-
PURGING METHOD: Micropurge Dedicated Bladder Pump									
SAMPLIN	SAMPLING EQUIPMENT: QED MP20 Flow cell, MP30 compressor, MP10H Controller, MP20  Lamotte 2020 Turbidity Meter								
Pump Intak	e Depth:	Lamotte		ge Rate: 100 milli	liters/minute	N	Ainimum Purg	ge Volume:	2026
Total Volu	me Removed	d: 3400ml	Con	troller Settings:	Refill:	ス Dis	charge: 7	Press	sure: S
Initial Gro	undwater Le	vel: 154.02	Con	troller Adjustm					<u> </u>
	ndwater Lev			troller Adjustm	ent:		~		~
Actual Time	Volume Purged mL	Temperature °C	pН	Conductance (ms/cm)	Dissolved oxygen mg/L	ORP	Turbidity NTu	Static Water Level	Description
1623	500ml	23,02	6.16	2.06	7.00	137	0.99	124.00	clear
626	800mL	23.19	6.04	2.07	7.13	139	1.15		clean
1628	1000mL	23112	5.98	2.08	7.30	142	0.76		clear
1631	1300ml	23.11	5,99	2.07	5.99	143	1.84		der
1634	1600mL	23.03	6.00	2.08	5,91	143	1.44	}	clear
1636	1800mL	23,07	6.00	2.09	5,99	143	1.45		clea-
1639	2100mL	23.06	6.01	2.08	6.00	143	1.48		dea
1640	2200mL		act	Samplini					
1652	3400mL	Pr-	d Sa	mpling	3 /			<b>^</b>	·
			- Per sicurpos in a series				11	Ţ	
					V		11,6		,
3/22/06									
Total Volume Purged: 2200ml Total Time: 34 min.									
Laboratory Analysis: VOCs (X) Metals Filtered () General chemistry () Gross Alpha/Beta () Nitrite () Other TPH-Fuc (dicsel 905)									
Total number of bottles:									
Comments: $\sim -55$									
TO:277									
QC Sample Collected? Yes ( ) No ( If YES, then type of sample and sample ID:									

()

QA CHECK							
Field Member	Date	Initials					
Sample Collector	3/22/06	AMN					
Sample Coordinator	3/24/06	cm					

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG									
PROJECT NO.: 6218-084 Round 23					SAMPLE LOCATION: 02 NEW7				
PROJECT NAME: MCAS El Toro					SAMPLE	SAMPLE LOCATION: 02 NEW7  SAMPLE ID: 02NEW7 -123  SAMPLED BY: DL			
DATE:	3/16	106			SAMPLED BY: DL				
EQUIPME	NT DECO	<b>ÍTAMINATED</b>	: YES		PURGE S	TART 1		337	
PURGING METHOD: Submersible Pump									
Well Casing Diameter 4"() 5"(> 6"()									
: Total Volu	me Removed	99 go	l		-		<del></del>	·	
Well To Depth		ginal DTW			0.66 ( 0.93) =1.5	Casing V	olume .		Purge Volume
148		122.41 =		<u>φ</u> ×	==			casg vol.	<u> </u>
	undwater Le	/ 6/	2.4/		Final Grou		·	122.	
Actual Time	Volume Purged	Temperature	Нq	Conductance (mS/cm)	Dissolved oxygen (mg/L)	ORP	Turbidity NTu	Des	cription
1240	9	21.66	7.64	1.28	6.50	94	1.20	cl	ear.
1343	18	21,33	7.64	1.26	4.76	111	1,0		7
1348	33	21.24	7.18	1.24	6.39	90	1.12		
1351	42	20.95	7.17	1.24	6.61	89	1.05		
1355	54	21.06	7.15	1.20	9.34	88	1.16		
1358	63	21.04	7.14	1.20	9.02	89	0,31		
1400	69	21.07	7.13	1-20	9.31	90	0.54		
1402	75	•	100	ne Prim	my San	res			
1408	93		1000	C Rug	treate	مکی آ	ph		
1410	99		my	150 y	4		<i>y</i>		
Average Purge Rate: 3 900 Total Time: 33 min  Laboratory Analysis: VOCs (X) Metals Filtered (A) General chemistry () Gross Alpha/Beta (A) Nitrite ()									
Laboratory Analysis: VOCs (X) Metals Filtered (A) General chemistry () Gross Alpha/Beta (Nitrite ()) Other									
Total number of bottles:									
Comments:									
(Dup)									
QC Sample Collected? Yes (V) No () If YES, then type of sample and sample ID: 02 New 7-323									

QA CIIC	LR		
Field Member	Date	Initials	
Sample Collector	3/16/06	OCC	
Sample Coordinator	32006	ann	

	G	ROUNDWAT	ER MON	ITORING WI	ELL PURG	ING AN	D SAMPLI	NG LOG		
PROJECT	NO.: 6218-	084 Round 23			SAMPLE LOCATION: 04_D6MW66A					
PROJECT	NAME: M	CAS El Toro			SAMPLE	ID: C	24-DGM	nw66A+123		
DATE:	3/16/00	,			SAMPLEI	DBY:	DL			
EQUIPME	NT DECON	TAMINATED	YES		PURGE START TIME: 1054					
PURGING METHOD: Submersible Pump										
Well Casing Diameter 4"() 5"(★) 6"()										
: Total Volume Removed: /// gal										
Well Total Original DTW 4"=0.66 Casing Volume Purge Volume Depth 6"=1.5										
235		casg vol. $= 92.15$								
Initial Grou	ındwater Le	vel: 201,9	7		Final Grou	ındwater	Level:	202.57		
Actual Time	Volume Purged	Temperature	pН	Conductance (mS/cm)	Dissolved oxygen (mg/L)	ORP	Turbidity NTu	Description		
1056	7	24.24	6.84	1.35	0,0	58	51.9	Part Cloudy		
1100	al	24.48	6.89	1.28	0.0	52	84.7	Part Clordy		
1104	35	25.63	6.91	1.40	0.0	31	9,52	Clear		
1108	52	25.83	7.01	1,31	0.0	22	3,79			
1112	66	25.90	7.02	1,35	0.0	23	2.39			
1116	83	25,94	7,02		0.0	24	1.60			
1118	90	26,04	7.02	. 27	0.0	22	2.87			
1119	93.5	26.04	7.03		0.0	23	1.62	<u> </u>		
112	100.5		100	0.7-7.7						
1124 Average Pr	111.0	7 =	EN	Smyl						
Laboratory	Average Purge Rate: 3.5 gcm Total Time: 30 m/N  Laboratory Analysis: VOCs (X) Metals Filtered (X) General chemistry () Gross Alpha/Beta (X) Nitrite ()									
Other										
	Total number of bottles: 4 645.									
Comments			<del> </del>				·			
QC Sample	Collected?	Yes ( ) No	Ø If	YES, then type	of sample ar	nd sampl	e ID:			

Q/1 Cheek										
Field Member	Date ,	Initials								
Sample Collector	3/16/06	DOL								
Sample Coordinator	320 06	CMM								

	C	ROUNDWAT	ER MO	NITORING W	ELL PURG	ING A	ND SAMPL	ING LOG		
PROJECT	NO.: 6218	-084 Round 23			SAMPLE LOCATION: 05, DGMW68A					
PROJECT	NAME: M	CAS El Toro			SAMPLE	ID: C	5_DGA	nw68A-123		
DATE:	3/16/0	6		<del></del>	SAMPLE	DBY:	DL			
EQUIPME	ENT DECO	TAMINATED	: YES		PURGE S	TART 1	IME: O	855'		
PURGINO	METHOD:	: Submersible P	ump		·	· · · · · · · · · · · · · · · · · · ·				
Well Casir	ng Diameter	4"(γ) 5"(	) 6"	( )						
: Total Volu	ıme Removed	: 84 go	il.							
Depth Veil Total Original DTW Vige Volume Purge Volume Purge Volume Purge Volume										
$\frac{192}{192} - \frac{165.32}{165.32} = \frac{20.68}{20.68} \times = \frac{17.6}{17.6} \times 3 \text{ casg vol.} = \frac{52.83}{17.6}$										
	undwater Le	10),	<del></del>		Final Grou			166.31		
Actual Time	Volume Purged	Temperature	pН	Conductance (mS/cm)	Dissolved oxygen (mg/L)	ORP	Turbidity NTu	Description		
0900	17.5	23.14	7.02	0.946	7.26	174	117-12	Part Clea		
0903	28.0	23.4	7,09	0.937	7.43	166	45.62			
0905	35.0	23.14	7.18	0.890	7.51	150	32.10	1		
0408	45.5	23.13	7.19	0.882	7.52	145	20.13	Clear		
0912	56.0	23.14	7.20		7.49	142	9.71			
0913	59.5	23,14	7.00	<del></del>	7.48	141	3.20			
0915	60.5	23,17	7.20	0.893	7.49	140	3.3	+		
0917	<del>13.5</del>	- +861		Amples			•	~		
0970	84.0	5	<b>V</b> )	Sprigue	<u> </u>					
							7			
Average Pu	irge Rate:	3.5 gpm	Tota	l Time:	25 m					
Average Purge Rate: 3.5 pm   Total Time: 25 min  Laboratory Analysis: VOCs (X) Metals Filtered (V) General chemistry () Gross Alpha/Beta (V) Nitrite ()  Other										
Total number of bottles:										
Comments:										
OC Sample	QC Sample Collected? Yes ( ) No ( ) If YES, then type of sample and sample ID:									
20 campio		20() 140(	<u> </u>	. 20, mon type (	or aminhin an	a sample	. i.J.			

QA Check '

Date	Initials
3/16/06	066
3 20 06	CMM
	Date 3/16/06

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG										
PROJECT	NO.: 6218-	084 Round 23			SAMPLE LOCATION: 05_DBMW41A					
PROJECT	NAME: M	CAS El Toro			SAMPLE	ID:	5- DI	3mw41	4-123	
DATE:	3/15/0	6			SAMPLE	SAMPLED BY: DL				
EQUIPME	NT DECON	TAMINATED	YES		PURGE S'	TART T	TME: 15	<i>a</i> 2		
PURGING METHOD: Submersible Pump										
Well Casing Diameter 4" (5"() 6"()										
: Total Volume Removed: 107, 5										
: Total Volume Removed: 107, 5  Well Total Original DTW 5"=0.66 Casing Volume Purge Volume Depth 5"=0.93 6"=1.5										
196 - $161.11$ = $38.89$ x = $19.07$ x 3 casg vol. = $57.26$										
Initial Grou	ındwater Le		1.11		Final Grou			161.52		
Actual Time	Volume Purged	Temperature	pН	Conductance (mS/cm)	Dissolved oxygen (mg/L)	ORP	Turbidity NTu	Des	scription	
1525	10,5	21.86	7.00	1.16	7,34	154	14.4	Cle	av	
1528	21.0	22.06	6.89	1.14	6.93	152	4,59			
1532	35.0	22, 28	6.88	1.10	6.91	146	7,94			
1534	42.0	22,25	6.94	1.09	6.86	141	2.51			
1534	49.0	22.24	6.97	1.07	7.04	134	2180			
1538	56.0	22.30	6.90	1.04	6.94	129	1.58			
1540	63.0		7,13	1.02	7,05	126	1.42			
1542	70.0	22.36	7.14	1.02	6,98	126	0.80			
1548	910	~	100	k Sample	0		_		•	
1557	107.5		END	SAMP				<u> </u>		
Average Pu	rge Rate:	3.5gpm		l Time:	35 mir	1				
Average Purge Rate: 3.5 pm Total Time: 35 mm  Laboratory Analysis: VOCs (X) Metals Filtered (Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control C										
Total numb	Total number of bottles:									
Comments:										
						- <del></del>				
QC Sample	Collected?	Yes () No	) If	YES, then type	of sample an	d sampl	e ID:			

3.5

QA Check

Field Member Date Initials

Sample Collector 3/15/06 D67

Sample Coordinator 3 20 bb CMM

	G	ROUNDWAT	ER MON	ITORING W					1()		
PROJECT	NO.: 6218	-084 Round 23			SAMPLE LOCATION: 03_DGMW64A SAMPLE ID: 03_DGMW64A_123						
PROJECT	NAME: M	CAS El Toro			SAMPLE	SAMPLE ID: 03_DGMW64A_123					
DATE:	3/15	106		· · · · · · · · · · · · · · · · · · ·	SAMPLEI	BY:	DL		1		
EQUIPME		NTAMINATED	YES		PURGE S	TART 1	TIME: 10	30	1		
PURGING	METHOD	Submersible P	ump						]		
Well Casin	g Diameter	4"() 5"(*	<b>5</b> 6"	( )							
: Total Volume Removed: 120 gal											
Well Total Original DTW 4"=0.66 Casing Volume Depth  4"=0.66 Casing Volume  Original DTW 6"=1.5											
255	· •	<i>220.</i> 67 =	34.	33 x	==	31	.93 x3	casg vol. = $95.7$			
Initial Gro	undwater Le	vel: 220.	67		Final Grou	ndwate	Level: 2	21.32	1		
Actual Time	Volume Purged	Temperature	pН	Conductance (mS/cm)	Dissolved oxygen (mg/L)	ORP	Turbidity NTu	Description			
1033	15	24,28	7.18	1.28	13.55	82	205	Cloudy			
1035	25	24.55	7.31	1.26	13.93	<del></del>	113				
1038	40	24.65	7.33	1.23	13.82	85	73,1				
1040	50	24.71	7.34	1.19	14.20	86	50.7		$\cup$		
1043	65	24.88	7.35	1.21	13.79	86	39.8	Poor cloudy	1		
1045	75	24.88	7.36	1,11	13.99	89	31,2		1		
1047	85	24.93	7.36	1.17	13.50		26.6				
1049	95	24,91	7.37	1.19	14,22	94	24.7				
1050	100		100		PLES			<u> </u>			
1054	120		END	SAMPL	no			<b>Y</b>			
Average Pt		5 gpm		Time: 24	min						
Laboratory Analysis: VOCs (X) Metals Filtered (X) General chemistry (X) Gross Alpha/Beta (X) Nitrite () Other											
Total numb	er of bottle	s: <b>6</b>									
Comments		<u> </u>									
									] .		
QC Sample	Collected?	Yes 🙀 No	X If	YES, then type	of sample ar	d samp	le ID: 53	Dimmb44: 323	1000		

Field Member	Date	Initials		
Sample Collector	3/15/06	062		
Sample Coordinator	3/20/06	CMM		

	GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG									
PROJECT	NO.: 6218-	084 Round 23			SAMPLE LOCATION: 03_ DGMW65XA					
PROJECT	NAME: M	CAS El Toro			SAMPLE	ID: C	3_ DGN	nw651A-123		
DATE:	3/15/0	6			SAMPLED BY: DL					
EQUIPME	NT DECON	TAMINATED:	YES		PURGE START TIME: 1320					
PURGING METHOD: Submersible Pump										
Well Casing Diameter 4"() 5" 6"()										
: Total Volume Removed: 120 Jen										
Well Total Original DTW 4"=0.66 Casing Volume Purge Volume Depth 5"=0.93 6"=1.5										
$\frac{348}{348} = \frac{313.79}{34.21} = \frac{34.21}{2} \times = \frac{31.82}{21.82} \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times $										
Initial Grou	ındwater Le	vel: 213,	79		Final Grou			714.15		
Actual Time	Volume Purged	Temperature	pН	Conductance (mS/cm)	Dissolved oxygen (mg/L)	ORP	Turbidity NTu	Description		
1323	12	25.12	7.14	1,23	4.07	24	41.2	Part Cloudy		
1326	24	25.14	7.12	1.26	3.99	25	30.6			
1330	40	25.18	7.13	1.26	4.23	31	2817	4		
11334	56	25.25	7.18	1.20	4.65	34	7.02	clear		
1337	68	25.25	7.21	1.26	4.82	38	6.32			
1340	80_	25,24	7,26	1.21	4,96	38	4.35			
1343	92	29.29	7.29	1.20	5.04	41	5.95	1		
1345	100	TOOK		mpres						
1348	112	took	PU	PLICATE	8 Amy	leo				
1350	120			myru	6			_		
Average Pu		4 grm			O min					
Laboratory Other	Laboratory Analysis: VOCs (X) Metals Filtered (A) General chemistry (B) Gross Alpha/Beta (A) Nitrite () Other									
Total numb	er of bottles	10 6	Fls,							
Comments:										
								Dup)		
QC Sample	Collected?	Yes (V) No	() If	YES, then type	of sample an	d sampl	e ID: 03_	DGMW65XA - 323		

QA Check								
Field Member	Date	Initials						
Sample Collector	3/15/06	262						
Sample Coordinator	32006	CMM						

	<u> </u>			ONI	TORING WE			_	G LOG	
PROJECT	Γ NO.: 6218-	084 Round 23	3			SAMPLE I	LOCATIO	ON: Ø	1_00	SBWHE
PROJECT	ΓNAME: M	CAS El Toro				SAMPLE I	D: 17	-DGHU	<i>&gt;</i> 8.5- ।	123
DATE:	3/22/0	<u>)</u> (၀				SAMPLED	BY: A	· N-ela	1	Moss
EQUIPM		TAMINATED	): Y	ES		PURGE ST	ART TI		-	
PURGIN	G METHOD:	Micropurge	Dedica	ted J	Bladder Pump	)				<del>, , , , , , , , , , , , , , , , , , , </del>
SAMPLI	NG EQUIPM	ENT: QED M			ell, MP30 con	pressor, M				15 15.0
Pump Intal	ce Depth:				e Rate: 100 milli	liters/minute	1	Minimum Pur	ge Volume:	2637
Total Vol	ume Remove	d: 3630	ml	Cont	roller Settings:	Refill:	8 Di	scharge: [Z	Press	
Initial Gro	oundwater Le			Cont	roller Adjustm			29		100
Final Gro	undwater Lev			Cont	roller Adjustm					
Actual Time	Volume Purged mL	Temperature °C	pł	I	Conductance (ms/cm)	Dissolved oxygen mg/L	ORP	Turbidity NTu	Static Water Level	Descriptio
12412	400mL	22.55	7.4	4	0.954	6.41	103	5.22		clan
1245	700mL	21.74	7.4	0	0.955	5.86	103	4.11		clear
1247	900m	21.87	7.3	8	0.957	5.63	104	4.11	179.87	
1249	lloom	22.03	7.3	7	0.956	5.26	los'	3.70		clear
1252	1400ml	22.19	7.3	7		4.28	106	3.42	179.87	clear
1255	1700mL	Z2.35	7.2	9	0.955	3,40	106	3,89		dea
1258	2000ml	22.29	7.2		0953	Z92	106	5.27	179.89	dear
1300	2200ml	Z2.40	7.2	7	0.952	2.77	106	6.63		clear
1303	2500mL	2z.50	7.2	7	0.952	2.43	104	6.28	179.89	, , ,
1305		22.65	7.2	7	0.95Z	Z.24	104,	3,550	_	clear
1306	2800mL		Sta		Sandin		#	111	,	
1327	3630		End		molinic	5	Um	1/	3,	22/06
Total Volu	ıme Purged:	2800mL	T	otal T	Cime!	,				
	y Analysis:	VOCs (X)	Metals	Filte	Ger Ger	neral chemis	try 💢	Gross Alpha	/Beta ( )	Nitrite ( )
Total num	ber of bottles	: 4	/							
Comments		als wer	<u>~ ~ ~ </u>	$\sim$	filtered	1 in 4	J. F.	اماما ط	uill n	ecc
7~	met Le Clh	ed in t		$\frac{\sim}{1}$	L	) <u> </u>	<u>, (                                   </u>	<u> </u>	WILL I	·CC
OC Sampl	e Collected?	Yes () No	X	lf YI	ES, then type o	f sample and	sample	ID:		

and get 420 b/c stopped

> Field Member Initials Date B/22/06 AMN Sample Collector

500 ml Metals & 3/4 of L for Gen ().

discharging (compressor vents Sample Coordinator 3/24/06 cm)

Prescription of the Sample Coordinator 3/24/06 cm

Sample Coordinator 3/24/06 cm

Prescription of the Sample Coordinator 3/24/06 cm

Same thing happened last round. -cm

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG											
				MON	ITORING WE						
		-084 Round 23				SAMPLE LOCATION: OZNEWIO					
		CAS El Toro		_		SAMPLE ID: OZNEW16-123					
DATE: 3	122/06		_			SAMPLED	BY: A.	Neigh	C.M	027	
EQUIPME	ENT DECON	NTAMINATED:		YES		PURGE ST	ART TI	ME: 0958			
		: Micropurge I			<u>-</u>	•					
SAMPLIN	IG EQUIPM	ENT: QED MI Lamotte			cell, MP30 com	apressor, M					
Pump Intak	•				pe Rate: 100 milli	iliters/minute	- 1	Minimum Pur	ge Volume:	1126	
Total Volu	ime Remove	d: 3950m(		Con	ntroller Settings:		8 Dis	scharge: Z	Press	. D	
	oundwater Le	・サノ、ない	بتر د	Con	ntroller Adjustm	ient:	7	3		ANY 30	
Final Grou	ındwater Lev	^{/el:} 42.50	1	Con	ıtroller Adjustm	ient:					
Actual Time	Volume Purged mL	Temperature °C	þ	рН	Conductance (ms/cm)	Dissolved oxygen mg/L	ORP	Turbidity NTu	Static Water Level	Description	
1002	300mL	18.70	7.2	20	1.103	5.47	111	1,30		clear	
1006	600mL	19.15	7.	22	1.094	5,17	118	0.76	HZ:45	clear	
1008	750mL	19.25	7.	23	1.095	5.23	120	0.97		clear	
1010	900ml	19.29	7.7	23	1.096	5.08	122	Z.83.	12.49	clear	
1014	12002	19.61	7.2	4	1.097	5,05	25	4.13		clean	
1016	1350 m		2	tar	+ Samp	hore	-				
1047.	395 Onl		E	-rd	Sample	اباط	<u> </u>				
	<u> </u>				-	<del>                                     </del>	1	<del>                                     </del>	1		
						ļ/	<u> </u>	1//			
						<del></del>	[/	1//	1		
<u> </u>			<del> </del>				m	1/	1		
Total Volu	Burged	10.6%	<u> </u>	Total	Times	<u> </u>				1	
		1350mL	-	<u> </u>	Time: 44	Min.		Cross Alpho	math K	Nitrite ( )	
Other	y Analysis:	VOCs (X)	Meta	lls Fin	ltered Ser	neral chemis	шу 📈	Gross Aipha	/Beta /	Nitrite ( )	
Total num	ber of bottles	<del></del>	-/	<u>/_</u>	<del></del>	····	<del></del>				
Comments	<u> </u>	<u> </u>	<u>/</u>	<del></del>	0110	11 1	CII				
	merc		ı	4	tield K	Herec	· _ // I	tering	MUST	<u>be</u>	
OC Sampl	e Collected?	2 in the		<u> </u>	ES, then type o	-farmala an	d comple	m,			
QC Sample	e Coneciçu:	Yes () No	<b>(X</b>	11 1	ES, then type o	A Sample and	1 Sample	ID.			

QA CHECK								
Field Member	Date	Initials						
Sample Collector	3/22/06	AHN						
Sample Coordinator	3/24/06	CM						

	G	ROUNDWAT	ER MC	ONITORING WI					
PROJECT	NO.: 6218-	084 Round 23	-		SAMPLE I	OCATI	ON: OZNE	ω15	(
PROJECT	NAME: MO	CAS El Toro			SAMPLE I	13.	NEW15-		
DATE: 3	/ 22/01	0			SAMPLED	BY: A	Meich.	•	loss
EQUIPME		TAMINATED:	YE	S	PURGE ST	ART TI	ME: 090	$\cap$	
PURGING	METHOD:	Micropurge D	edicat	ed Bladder Pum	p				·
SAMPLIN	G EQUIPM			ow cell, MP30 co Furbidity Meter	mpressor, M	P10H C	ontroller, Ml	P20	
Pump Intake	Depth:	Lamotte		urge Rate: 100 mil			Minimum Purg	ge Volume:	
Total Volu	me Removed	1: 1875m		Controller Settings	Refill: 1	8 Di	scharge: 7	Press	sure: 40
Initial Gro	undwater Le	vel. 30	27 C	Controller Adjustr	nent:	<u>ড</u>	2	<u>'                                     </u>	30
Final Grou	ndwater Lev	el: 20.37		Controller Adjustn		<u></u>			
Actual Time	Volume Purged mL	Temperature °C	рH	Conductance (ms/cm)	Dissolved oxygen mg/L	ORP	Turbidity NTu	Static Water Level	Description
0904	300ml	18.58	7.10	1.105	5.65	154	Wit		cleac
0908	600mL	18.95	7.15	5 1.177	5.07	155	5.16		cleca
0910	750mL	18.88	7.15	5 1.234	5.25	156	6.97	3D.35	clean
0914		18.60	7.16	0 1.252	5.12	157	4.24	{	clear
0716	1200ml	18,52	7.15	5 1.255	5.61	158	1.97	30.37	clear
0917	1275ml	<u> </u>	tar	+ Sampl	ing -				(
0933	1875ml	E	bai	Samplin	, C				
					11			<u>ノ</u>	
					V-1		11/		
					<u> </u>		HA		
						K 0	11/9	<u></u>	
T-4-1 17-1-			To	tal Times O. O.	Ĭ	<u> </u>	<u> </u>	<u>3/2</u>	2/06
	me Purged:	275mL	_		nin .	<del></del>	Gross Alpha/	Poto Vi	Nitrite ( )
Laboratory Other	Anaiysis:	VOCs (X) (	Metals	Filtered (X)	merai chemis	uy()	————	———	Nitrite ( )
Total numb	er of bottles	: /i	/-					<del></del>	
Comments		7	- 	1 (7)	, A	) <u> </u>			
	<del>- 1000</del>	CI.	ete k	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	eg my	مسر	·· <del>·</del>		
OC Sample	Collected?			f YES, then type	of sample and	i sample	ID:		
∠ ⊃mmpre			λζ ,		<b> </b>	P10			

OA Check

QA Che	· N	
Field Member	Date	Initials
Sample Collector	3/22/cic	AMM
Sample Coordinator	3 24 06	an

	G	ROUNDWAT	ER M	ON	ITORING WE	LL PURGI	NG AND	SAMPLIN	G LOG	
PROJECT	NO.: 6218-	084 Round 23				SAMPLE I		/ 1 1 / K	JEWS	A
PROJECT	NAME: M	CAS El Toro			·	SAMPLE I	D: 02 s	JEL-186	1 -127	ZAN 123
DATE:	3/16/0	6				SAMPLED	BY:	Meigh	C.F	1055
EQUIPMI	ENT DECON	TAMINATED:	YI	ES		PURGE ST	ART TIN	Æ:		
PURGINO	METHOD:	Micropurge I	edica	ted	Bladder Pump		·		<b></b>	
SAMPLIN	G EQUIPM	ENT: QED MI				pressor, M	P10H Co	ntroller, M	P20	
Pump Intak	a Danthi	Lamotte	2020	Tu	rbidity Meter c Rate: 100 milli	litaus/minuta		Ainimum Pur	Volumer	
1 -	-			_					· · · · · · · · · · · · · · · · · · ·	1560
	me Remove	/ I ar T 1 wa			troller Settings:		$\boldsymbol{\varphi}$ Dis	scharge: 4	Press	ure: 60
Initial Gro	undwater Le	vel: 48.36	2		troller Adjustm		16	4		50
Final Grou	ndwater Lev	el: 48.36	۱ د	Con	troller Adjustm	ent:				
Actual Time	Volume Purged	Temperature °C	рH	I	Conductance (ms/cm)	Dissolved oxygen	ORP	Turbidity NTu	Static Water	Description
711110	mL					mg/L	m.U	IVIU	Level	
11:51	300mL	22.90	7.3	6	0.796	6.96	89	z.2		clear
11:53	soom	22.85	7.2	2	0.817	6.08	88	46	48.38	clean
11.56	8002	22.65	7.1	3_	0.858	4.86	84	1.4		clear
11:59	1100~L	22.71	7.1	1_	0.861	4.23	क्ट	1.5	48.38	clean
12:01	1300ml	22.58	7.1	0	0.863	4.27	81	1.3		clean
12:03	1500ml	St	مہ		Sampli	nc				
12:14	ZLOON				mpling	2				
_			7		<del>, (-, -, -)</del>	4			•	
							./			
							1	//	•	
_							<b>↓</b>		_	
ļ							3/	11.10	,	
Total Volu	me Purged:	1500mL	To	otal	Time: 710 c	nin.			$\rho$	
Laboratory			Metals	Fil			try() (	Gross Alpha	Beta	Nitrite ( )
Other					<u></u>			· · · · · · · · · · · · · · · · · · ·	- ( -	
Total numl	er of bottles	H				· · · · · · · ·		· ·		,
Comments		<del>-</del> -[			· · · · · · · · · · · · · · · · · · ·			<u> </u>	=	
							4		<u> </u>	
OC Sample	Collected?	Yes () No	X)	ΙfΥ	ES, then type o	f sample and	l sample l	D:		**********
20 Sample		-33() 110	· V	1		- Jampio allo	- outstpio i			·

QA CIIC	- N	
Field Member	Date	Initials
Sample Collector	3/14/06	AN
Sample Coordinator	3 20 66	amm

	G	ROUNDWAT	ER MO	NITORING WE	LL PURGI	NG ANI	SAMPLIN	G LOG	-	
PROJECT	'NO.: 6218-	084 Round 23			SAMPLE I	LOCATIO	ON: OL_I	HWZ	.01	()
PROJECT	NAME: M	CAS El Toro			SAMPLE I	D: Ol.	- Mus	201-L	27 AN 12	<u>3</u>
DATE: 3	/16/0	6			SAMPLED	BY: A	Meigh	+C.F		
EQUIPME	NT DECON	TAMINATED	: YES		PURGE ST	ART TI	ME: IO:			
PURGING	METHOD:	Micropurge I	Dedicate	d Bladder Pump	•					
SAMPLIN	IG EQUIPM			v cell, MP30 con urbidity Meter	ipressor, M	P10H C	ntroller, M	P20		
Pump Intak	e Depth:	Lamotte		rge Rate: 100 milli	liters/minute	1	Minimum Pur	ge Volume:	901	-
	ıme Remove	I ICX JA	Co	ontroller Settings:	Refill: 1		scharge: 3		sure: 98	_
Initial Gro	undwater Le	vel: 39,17		ontroller Adjustm	ent:	7			30	
	ındwater Lev		Co	ontroller Adjustm	ent:	•		·		
Actual Time	Volume Purged	Temperature °C	pН	Conductance (ms/cm)	Dissolved oxygen	ORP	Turbidity NTu	Static Water	Description	1
10:41	mL	Atu		AMA	mg/L		_	Level		-
	400mL	11.3		-0.319	5to	1 90	rud 6	to ad		more
10:45	100-01	2180	779	0.57/	/ 97	1.11	100		Start Po	<del>18</del>
10:47	600m		7.73	<del></del>	6.87	146	0.0	29.9	clear	
10:49	800~	21.84	7.14	0.576	6.77	145	0.45	31.11	4	
10:51	1000mL		1.15	0.575	6.62	143	0.50	20.20	"	
10:53	1200mL	21.99	7.76		7.02	141	0.15	39.20	"	_(,)
10:54	1300mL		tart	Samb	1000			20.00	46	
11:00	1900mL		5406	5 Jambi	ng	-		39.20		
							$A \gg a$			
				· //	4	- //	/ (			
						V				
Total Volu	me Durged:	10.00	Tota	Time: 22			3/16	p (0 A	)	
		300 ml		l Time: 23 m iltered ( ) Ger		ton; ( ) /	Grass Alpha	/Dota ( )	Nitrita ( )	_
		so tes	IVICIAIS I	Ger	iciai chemis	<u> </u>	Jioss Aipha			_
Total numb	per of bottles	Ш								
Comments	:				<del></del>					
					<del></del>				·····	
QC Sample	Collected?	Yes ( ) No	) If	YES, then type o	f sample and	sample 1	D:			

QA CIIC	- A	
Field Member	Date	Initials
Sample Collector	3/16/06	AMA
Sample Coordinator	3/20/06	anin

	G	ROUNDWAT	ER MON	ITORING WE					
PROJECT	'NO.: 6218-	-084 Round 23			SAMPLE I	CATIO	ON:04_1	JGM L	163
PROJECT	NAME: M	CAS El Toro			SAMPLE I	D:041	GHWI	03-12	2
DATE: 2	3/16/0	6			SAMPLED	BY:	Neigh	(C.F	1054
EQUIPME	ENT DECON	TAMINATED	: YES		PURGE ST				
PURGINO	METHOD:	Micropurge I	Dedicated	Bladder Pump	)		- Section Con-		<del></del>
SAMPLIN	IG EQUIPM	ENT: QED MI			npressor, M	P10H Co	ntroller, M	P20	······································
Pump Intak	e Depth:	Lamotte		rbidity Meter ge Rate: 100 milli	iliters/minute	N	Minimum Pur	ge Volume:	279A
Total Volu	ıme Remove	d: 47m2	Cor	ntroller Settings:	: Refill: 1		scharge: Z	Deag	3710
Initial Gro	undwater Le	vel: 199 .37	Cor	ntroller Adjustm	<u>.</u>	3	2		120
	ındwater Lev			ntroller Adjustm					720
Actual	Volume	Temperature	pН	Conductance	Dissolved	ORP	Turbidity	Static	Description
Time	Purged mL	*C	·	(ms/cm)	oxygen mg/L	mV	NTu	Water Level	
13125	300 m	zz.82	7.98	1.289	8.62	32	13	199.30	
13:28	600mL	23.02	7.48	1.315	7.62	34	9.5		Fe buts, dea
1331	900 mL	22.94	7.15	1.402	5.11	40	38		cloudy. Fe b
1334	(200	23.09	7.14	1.404	5.15	39	55	199.30	n
1337	1500	22.96	7.11	1407	3.54	41	15	199.31	L.
1340	1800	23.13	1.09	1.404	2.91	42	90		velloco
1343	2106	23.21	7.09	1.410	2.56	43	95	(	vellow
1346	2400	23.04	7.09	1.410	2.57	42	96		rellow
1349	2700	2288	7.10	1.410	2.44	41	80		rellon
1352	3000	22,75	7.09	1.407	2.45	41	70	199.31	vellow
1401	3900	- 51	imple						
	4100		<del>\</del>						· · · · · · · · · · · · · · · · · · ·
	me Purged:	> 100 MI	Total	Time: 59 r	nin.		-		
Laboratory Other	Analysis:	VOCs (X)	Metals Fil	tered (X) Ger	neral chemis	try() (	Gross Alpha	Beta 📉	Nitrite ( )
	er of bottles	: 4							
Comments:		<u> </u>		36	- "			·	
Comments	• 								
OC Sample	Collected?	Yes ( ) No	7 160	ES, then type o	f cample and	l cample 1	n.		
QC Sample	Concoen	169() 140(	X "1	153, men type 0	a sample and	i sampie i			

Field Member	Date	Initials
Sample Collector	3/4/06	AN
Sample Coordinator	3/20/06	ann

	G	ROUNDWAT	ER MON	ITORING WE					
PROJECT	'NO.: 6218-	-084 Round 23	,		SAMPLE I	OCATIO	DN: 04-	DBML	J40 (
i		CAS El Toro			SAMPLE I	D: 04	- DBH	WHO	-123
DATE: 2	-17-01	1		· ,	SAMPLED	BY: <b>∆</b>	Mainh	CVI	ACC
EQUIPMI	ENT DECON	TAMINATED	: YES		PURGE ST	ART TIN	ME: (0: 24	Ľ	<u> </u>
PURGINO	METHOD:	Micropurge I	Dedicated	Bladder Pump	)		10.2	<del>-C</del>	17.19
SAMPLIN	IG EQUIPM			cell, MP30 con	pressor, M	P10H Co	ntroller, M	P20	
Pump Intak	e Depth:	Lamotte		rbidity Meter ge Rate: 100 milli	liters/minute	IN	Minimum Pure	ge Volume:	2450
Total Volu	me Remove	d: 4400m	j -	ntroller Settings:		n Die	scharge:		• •
Initial Gro	undwater Le	vel: 100 0	10.	ntroller Adjustm				11000	ແວ
	indwater Lev		7	itroller Adjustm		<u>Z</u>	8	<del></del>	_115
Actual	Volume	Temperature	7 DH	Conductance	Dissolved	ORP	Turbidity	Static	Description
Time	Purged mL	°C	ļ	(ms/cm)	oxygen	) Au	NTu 💥	Water	Description
10:29	500 mL	20.58	7.86	1.333	6.7(	11	0.00	Level	
10:32	800ml	21,25	7.54	1.348	5.04	13	0.00	50.00	clear
10:35	1100mL		<del></del>			13	<i>0</i> .00	199.89	· · ·
	† · · · · ·	21.59	7.39	1.351	3.69			100 00	
10:38	1400mL		7.33	1	2.88	11		199.89	_ 1
10:41	1700 mL	21.62	7.31	1.362	2.48	9	9.7	0.00	clear
10:44	2000 m	Z1.55	7.29	1.371	Z.34	8	8.6	179.89	cear
10:47	2300m	21.66	7.29	1.378	2.21	9	8.6		clean
b:49	2500mL		7.28	1.379	2.17	5	6.3		dear
	2,200mL		7.27	1. 375	2.17	,5	8.1	199.89	clear
10:52	2800ml	Sto	حليك	amp ling			$\mathcal{A}$	/	
11:08	4400m2	End	San	pling			7/17/		
<del></del>		2800 ml			u	n/			
	me Purged:	<del>2800~</del>	Total	7 1 1	nin.	·	V		
Laboratory Other	Analysis:	VOCs (X)	Metals Fil	tered (Q) Ger	neral chemist	try() (	Gross Alpha/	Beta 餐	Nitrite ( )
<del></del>	per of bottles	: 4							
Comments	*Tuck	idity me	te-w	as not u	<del>sorking</del>	prop	erly S	ee no	ebook
	for add	ditional	deta	ils.	<b>J</b>	,			
QC Sample	Collected?	Yes () No	X If Y	ES, then type o	f sample and	sample I	D:		•
						<del></del>			

Z.1 Once					
Field Member	D	ate		Initials	
Sample Collector	Yı	710	26	MAYN	
Sample Coordinator	3	20	106	CMM	

	G	ROUNDWAT	ER MON	TORING WE	LL PURGI	NG ANI	SAMPLIN	G LOG	<del></del>
PROJECT	ΓNO.: 6218-	084 Round 23			SAMPLE I	OCATIO	ON: OS N	F7.2	
PROJECT	TNAME: M	CAS El Toro			SAMPLE I			_	.3
DATE:	3-17-6	ماه			SAMPLED		Nelah	-	105 S
EQUIPM	ENT DECON	TAMINATED	: YES		PURGE ST	ART TI		^	<u> </u>
PURGING	G METHOD:	Micropurge I	Dedicated	Bladder Pump	)				
SAMPLI	NG EQUIPM	ENT: QED MI			pressor, M	P10H C	ontroller, M	P20	
Pump Intal	ce Depth:	Lamotte	Purg	bidity Meter c Rate: 100 milli	liters/minute		Minimum Pur	ge Volume:	2110
Total Vol	ume Remove	d: 4000 ~ L	Con	troller Settings:	Refill: \		scharge: O		sure: 86
	oundwater Le	ual: 1 4 4		troller Adjustm	ent:	,	8	·	90
Final Gro	undwater Lev		-	troller Adjustm		<del>-</del>			
Actual Time	Volume Purged mL	Temperature °C	рН	Conductance (ms/cm)	Dissolved oxygen mg/L	orp hV	Turbidity NTu	Static Water Level	Descriptio
8:10		20.16	7.45	1.137	7.89	-15	1.9	_	clear
8:13	700m	20.24	7.25	1.145	8.27	-11	2.6	141.80	l.
8:16	1000nL		7.17	1.144	8.65	-5	7.5		clear
8:18	1200 ml		7.13	1.143	8.80	-2	8.7	14.83	
8:21	1500mg	20.22	7.09	1.142	8.74	5	8.9		clear
8:23	1700mL	20.06	7.08	1.142	8.63	7	9.6	161.81	clear
8: Z6	2000mL	19.97	7.07	1.141	8:47	10	7.7		clear
8:28	2200ml	19.82	7.05	1.141	8.50	13	5.8	14.81	clear
8:30	2400ml		10C1	Sampli		<u> </u>	<u> </u>		
8:56	4000ml	<u> </u>	79 Z	mpling	1		7 1	<b>&gt;</b>	
					1/	1			
	Duranda	21:00	Total	Time: 50	Uh	1./		3-17	106
_		2400ml VOCs (X)		~しか	neral chemis	tru NK	Gross Alpha	/Beta X	Nitrite ( )
Other		See	COC		notal Chemis	, X	·		
Total num	ber of bottles	5							

•	QA Check 3/17/06  Field Member Date Initials
	Field Member Date Initials Sample Collector 3/16/05 MIN
	Sample Coordinator 32006 CMM

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG									
PROJECT		SAMPLE LOCATION: 05 DGMUDGTA							
PROJECT		SAMPLE ID: OS_DGMWG7A-123							
DATE: 2		SAMPLED	BY: V	مام عملاً الكار	()	loss			
EQUIPME	NT DECON	TAMINATED:	YES		PURGE ST	ART TIN	AE: 9: 12	-	
PURGING METHOD: Micropurge Dedicated Bladder Pump									
SAMPLING EQUIPMENT: QED MP20 Flow cell, MP30 compressor, MP10H Controller, MP20									
Pump Intake Depth:  Pump Intake Depth:  Purge Rate: 100 milliliters/minute  Minimum Purge Volume: 2200mL									
Total Volu	me Removed	1: 4900ml	Con	troller Settings:	Refill:		ohorge: .	Drace	
Initial Gro	undwater Lev	vel: 163,2	II Con	troller Adjustm	•		9	b Fress	100
Final Grou	ndwater Lev			troller Adjustm					
Actual	Volume	Temperature	pH	Conductance	Dissolved	ORP	Turbidity	Static	Description
Time	Purged mL	°C		(ms/cm)	oxygen mg/L		NTu	Water Level	
9:16	400mL	19.35	7:37	0.945	8,05	16	0.00		some large
7:18	600ml		8.18	0.960	7.72	17	0.00	163.24	clear
9:21	900ml	20.28	7.69	1.014	7.20	23	0.00	_	clear
9:24	1200mL	20.14	7.44	\$ 1.054	6.42	<b>75</b>	0.00	-	clear
9:27	1500mg	19.98	7.34	1.071	6.13	28	0,00	(63.25	clear
9:30	1800mL	20.12/	7.28	1.082	5,61	30	0.00	<b>-</b>	clear
9:32	2000mg	19,89	7.26	1.085	5.38	30	0.00	_	clear
9:34	2200m	19.83	7,74	1.085	5.37	31	0.00	163.25	clear
9:35	2300mL	Stard	Same	ling					
9:49	4900ml	End	•	ding 1		//	11		
•						/	41//		
					U	1		3-1	7-06
Total Volu	me Purged:	2300mL	Totai	Time: 37m			<i>U</i>		
Laboratory Analysis: VOCs (X) Metals Filtered (M) General chemistry (M) Gross Alpha/Beta (M) Nitrite ()									
Other									
Total number of bottles:									
Comments									
QC Sample	Collected?	Yes () No	X If Y	ES, then type o	f sample and	sample	ID:		ł

Q'I Chock								
Field Member	Date	Initials						
Sample Collector	3/17/06	MM						
Sample Coordinator		Chin						

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG									
PROJECT NO.: 6218-084 Round 23				SAMPLE LOCATION: 17 NEW 1					
PROJECT	NAME: M	CAS El Toro			SAMPLE ID: 17 NEW 1-123				
DATE:	3/20/0				SAMPLED		Neigh	1	
EQUIPME		TAMINATED:	: YES		PURGE ST	ART TIN		7	
PURGING METHOD: Micropurge Dedicated Bladder Pump									
SAMPLING EQUIPMENT: QED MP20 Flow cell, MP30 compressor, MP10H Controller, MP20									
Pump Intake Depth:  Pump Intake Depth:  Purge Rate: 100 milliliters/minute  Minimum Purge Volume: 2330									
j -	•	3. 4 4							
Total Volu	me Kemoved	d: 4000m		ontroller Settings:		8 Dis	scharge: [2	Press	sure: 90
<u> </u>	undwater Lev	110.70	<u> </u>	ontroller Adjustm		<u>20</u>	10	)	100
Final Grou	indwater Lev	<u> 110, (t</u>		ontroller Adjustm		3	7		100
Actual Time	Volume Purged	Temperature °C	рН	Conductance (ms/cm)	Dissolved oxygen	ORP	Turbidity NTu	Static Water	Description
Himo	mL			(1115, 4117)	mg/L	mV	172 11	Level	
1052	SOOML	20.95	8.11	0.820	5.41	234	34.8	_	clear
1055	800mL	21.05	7.72	0.850	5.20	232	25.9	ســـــــــــــــــــــــــــــــــــــ	clea
1058	1100mL	21.16	7.40	0.914	4.72	228	31.7	175.73	clear
1101	1250mL	Z1.13	7.32	0.962	4.56	225	36.0	175.73	
1107	1550mL	20.88	7.24	1.033	3.95	217	51.9	175.73	hozier
11 13	1850 mL	20.23	7.20	1.093	5.00	209	61.9	175.72	16
1119	2150mL	20.73	7.20	1.116	4.68	200	53.1	175.71	"
1123	2350ml	20.74	7.20	0 1.126	4.53	<b>PRS</b>	51.8	175.7 (	4
1124	2400ml		Star	+ Samol.	nc				
1147	4000ml		End						
					3	1 ~			
				+ 17	1//	11	3/20/	ماه	
Total Volu	Total Volume Purged: 2400ml Total Time: LeOmin.								
Laboratory Analysis: VOCs (X) Metals Filtered General chemistry (X Gross Alpha/Beta () Nitrite ()									
Other									
Total numb	per of bottles:	:4							
Comments	*There	appears to	be sc	me drawd	own pro	bably	due to 4	he san	who tube
Devid hi	weren o	son wid Ance	443	i rem bour	<del>bs a wou</del>	င ဇယ	than ex	. कटलेटले	consing out.
	e Collected?	Yes () No (		YES, then type o					<del>_</del>
			<b>~</b>	, ,,	•	•			

Q11 Oncor								
Field Member	Date	Initials						
Sample Collector	Bladow	AMN						
Sample Coordinator	3/20/66	Cmm						

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG									
DDOTECT		084 Round 23		TORING WE					An
		SAMPLE LOCATION: 02NEW11-123							
PROJECT		SAMPLE II	D: 021	1EW11-12	2.3				
DATE:	3/21/06		,		SAMPLED	BY:	Veigh,	2. Mass	
		TAMINATED:	YES		PURGE ST	ART TIN	ME: 1515		
PURGINO	METHOD:	Micropurge I	Dedicated	Bladder Pump	)				
SAMPLING EQUIPMENT: QED MP20 Flow cell, MP30 compressor, MP10H Controller, MP20									
Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump I									
-	=			SONL	min.	· · ·	vinimum Fuiş	ge voiume:	840
	me Remove	·/ ( ) » \	L	troller Settings:	• (	Dis	scharge: 2	Press	oure: 35
Initial Gro	undwater Le	vel: 30.26	Con	troller Adjustm	ent: \7	i.S	2.5		35
Final Grou	ndwater Lev	el: 30.28	Con	troller Adjustm	ent:				
Actual	Volume	Temperature °C	pН	Conductance	Dissolved	ORP	Turbidity	Static	Description
Time	Purged mL	· C		(ms/cm)	oxygen mg/L	(mV)	NTu	Water Level	
1520	150	17.92	7.22	1.155	4.79	144	1.66	30,26	clear
1525	300 ml	18.76	7.22	1.134	3.51	145	3,29	_	clean
1530	450ml	18.99	7.23	1.130	3,26	146	4.10	30.28	cleca
1535	booml	18.96	7.25	1.130	3,20	146	4.78		clear
1540	750mL	18:88	7.25	1.136	3.14	145	*	30.28	dear
1545	900mL	18.71	7.26	1.141	3.00	143			clear
1546	930mL		Sto	rt San	plnic	,			
1556	Z530mL		End	Samoli	ma 1	)	1		
		, and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of		At Care and State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State	1 / 1				
			, the Paris of the Street Property		/ /	, and the second		1	
		parties assessed as a 10 and			M	(	7//	3/2	21/07
Total Volu	me Purged:	930mL	Total	Time: Um	·, ~ ·				
Laboratory			Metals Fil		neral chemist	try()	Gross Alpha/	Beta 💢	Nitrite ( )
Other				· · · · · ·					
Total numb	per of bottles	4			<del></del>				
Comments	* 1.11.		.1.1						•
	* potes	A ON DAG	WOIL WA	neter ran	1001				
QC Sample	Collected?	Yes () No i	₩ If Y	ES, then type o	f sample and	sample 1	D:		
QC Sample Collected? Yes ( ) No Y If YES, then type of sample and sample ID:									

QA CIICER							
Field Member	Date	Initials					
Sample Collector	3/21/04	AMN					
Sample Coordinator	3/24/06	CM					

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG										
PROJECT NO.: 6218-084 Round 23					SAMPLE LOCATION: 02_DGMW59					
PROJECT NAME: MCAS EL Toro					SAMPLE ID: 02_DSMW59-123					
DATE: 3	1/21/06				SAMPLED	DI	Neigh.	<b>~</b> .	020	
		TAMINATED	: YES		PURGE ST	ART TIN	VIE: 02	•	<u>U-U</u>	
PURGIN	PURGING METHOD: Micropurge Dedicated Bladder Pump									
SAMPLING EQUIPMENT: QED MP20 Flow cell, MP30 compressor, MP10H Controller, MP20										
Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump Intake Depth:  Pump I									1101	
<u>-</u>	ume Remove	<del>d: 10</del>		troller Settings:	Posili I					
ľ		UISOMC		itroller Adjustm	ont:		scharge: 3	FIESS	sure: 56	
		vel: 53.21	[						_50_	
	undwater Lev	22, 11		ntroller Adjustm			_			
Actual Time	Volume Purged mL	Temperature °C	рН	Conductance (ms/cm)	Dissolved oxygen mg/L	ORP	Turbidity NTu	Static Water Level	Description	
1025	150mL	16,84	7.22	0.927	5.90	160	0.60	53.63	dean	
1030	300mL	16.52	7.21	810.1	4.24	161	1.08	<i>5</i> 3.65	clear	
1035	450mL	16.98	7.20	1.072	3.18	161	0.56	53.71	clear	
1040	600ml	17.29	7.20	1.095	3.84	160		53.71	clear	
1045	750mL	17.08	7.18	1.093	3.74	159	0.62	53.71	clan	
1050	700ml	17.70	7.16	1.101_	2.98	158	2.17	53.71	clea	
1055	1050mc	17.76	7.19	1.098	2.84	157	1.43	53.71	cka	
1100	1200mL	18-36	THE THE	1.104	4.42	155	0.27	53.71	clean	
1101	1230nL		Sta	+ Samo	line.	1				
1134	6130mL		En	10	(					
				<u> </u>	J	//	10			
						$\dot{\mathcal{M}}$		, 3/2	1/04	
Total Volume Purged: 1230 m L Total Time: 74mm.										
Laboratory Analysis: VOCs (X) Metals Filtered General chemistry () Gross Alpha/Beta Nitrite () Other										
Total number of bottles: 17										
Comments:										
		· .		, . <u>.</u>	•		-		······································	
OC Sampl	e Collected?	Yes No	() If Y	ES, then type o	f sample and	sample I	D:			
QC Sample Collected? Yes No() If YES, then type of sample and sample ID:  OZ-PGMW59-123  NS/MSD										

OA Check

QA Check							
Field Member	Date	Initials					
Sample Collector	3/21/04	AMN					
Sample Coordinator	3/24/06	CM					

GROUNDWATER MONITORING WELL PURGING AND SAMPLING LOG									
PROJECT NO.: 6218-084 Round 23					SAMPLE LOCATION: 02NEW2				
PROJECT NAME: MCAS El Toro					SAMPLE ID: OZNEWZ-1Z3				
DATE: 3	3/22/06				SAMPLED	ву: А	Neich	<del>```</del>	
EQUIPME	ENT DECON	ITAMINATED	YES		PURGE ST	ART TIN	ME: 1105	•	
PURGING METHOD: Micropurge Dedicated Bladder Pump									
SAMPLING EQUIPMENT: QED MP20 Flow cell, MP30 compressor, MP10H Controller, MP20									
Lamotte 2020 Turbidity Meter   Pump Intake Depth:   Purge Rate: 100 mtll/titers/minute   Minimum Purge Volume: 1187									
Total Volu	me Remove	d: 18750	1 Co	ontroller Settings:	Refill: 1	7 Dis	scharge: >	Press	1(0 C)
Initial Gro	undwater Le	vel: (2 O	J Co	ontroller Adjustm	ent:			····	70
Final Grou	indwater Lev	^{el:} (08.07		ontroller Adjustm	ent: _				
Actual Time	Volume Purged mL	Temperature °C	pН	Conductance (ms/cm)	Dissolved oxygen mg/L	ORP	Turbidity NTu	Static Water Level	Description
1109	300mL	20.58	7.73	1.069	6.90	112	0.06		clean
nit	450mL	20.39	7.40	1.107	5,65	115	1.77	68.06	
1115	750m L	zo.43	7.33	1.105	4.69	118	1.91		clean
1117	960m L	20.37	7.29	1.104	4.18	121	1.45	68.de	Clear
1121	1200mL	20.40	7.29	1.102	3.73	124	0.04		clea
1122	1275mL	·	Sta	+ Samo	livíc .				. (
1138	BBM	•	End	Samolin	3		A		i
				\	2/			<u> </u>	
					Um	//		3/2	2/06
			<del></del>						
	me Purged:	1275 ml		1 Time: 33	min.				
Laboratory Analysis: VOCs (X) Metals Filtered General chemistry () Gross Alpha/Beta Nitrite () Other									
Total numb	er of bottles	:4/						· · · · · · · · · · · · · · · · · · ·	
Comments: metals were not feld filtered and will have to be filtered									
t ni		b	,	•				14-14	
	Collected?	Yes () No	X If	YES, then type o	f sample and	sample I	D:		

QA CHEEK							
Field Member	Date	Initials					
Sample Collector	Yzz/ou	MM					
Sample Coordinator	324/06	CW					